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Learning policies for partially observableenvironments: Scaling upMichael L. Littmanmlittmancs.brown.edu Anthony R. Cassandraarccs.brown.eduLeslie Pack Kaelblinglpkcs.brown.eduDepartment of Computer ScienceBrown UniversityProvidence, RI 02912-1910July 28, 1995AbstractPartially observable Markov decision processes (pomdp's) modeldecision problems in which an agent tries to maximize its reward inthe face of limited and/or noisy sensor feedback. While the study ofpomdp's is motivated by a need to address realistic problems, exist-ing techniques for �nding optimal behavior do not appear to scale welland have been unable to �nd satisfactory policies for problems withmore than a dozen states. After a brief review of pomdp's, this paperdiscusses several simple solution methods and shows that all are capa-ble of �nding near-optimal policies for a selection of extremely smallpomdp's taken from the learning literature. In contrast, we show thatnone are able to solve a slightly larger and noisier problem based onrobot navigation. We �nd that a combination of two novel approachesperforms well on these problems and suggest methods for scaling toeven larger and more complicated domains.1
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1 IntroductionMobile robots must act on the basis of their current and previous sensorreadings. In spite of improvements in technology, a robot's informationabout its surroundings is necessarily incomplete: sensors are imperfect, ob-jects occlude one another from view, the robot might not know its initialstatus or precisely where it is. The theory of partially observable Markovdecision processes (pomdp's) [Astrom, 1965, Smallwood and Sondik, 1973,Cassandra et al., 1994] models this situation and provides a basis for com-puting optimal behavior.A variety of algorithms exist for solving pomdp's [Lovejoy, 1991], but be-cause the problem is so computationally challenging [Papadimitriou and Tsitsiklis, 1987],most techniques are too ine�cient to be used on all but the smallest problems(2 to 5 states [Cheng, 1988]). Recently, the Witness algorithm [Cassandra, 1994,Littman, 1994] has been used to solve pomdp's with up to 16 states. Whilethis problem size is considerably larger than prior state of the art, the algo-rithm is not e�cient enough to be used for larger pomdp's.Thus, the generality and expressiveness of the pomdp framework comeswith a cost: only extremely small problems can be solved using availabletechniques. This paper is an incremental attempt at narrowing the gapbetween promise and practice. Using reinforcement-learning techniques andinsights from the pomdp literature, we show how a satisfactory policy canbe found for a pomdp with close to 100 states and dozens of observations.We assume that a complete and accurate model of the state transition dy-namics is given and use various techniques to construct a policy that achieveshigh reward. Even with these restrictions, the problem of �nding optimal be-havior is still too di�cult and we have chosen to simplify it in several respects.First, we will be satis�ed if we can �nd reasonably good suboptimal policies.Secondly, our training and testing is done using simulated runs from a �xedinitial distribution, limiting the set of situations for which the algorithmsneed to �nd good behavior.The structure of the paper is as follows. The introduction summarizes for-mal results concerning the pomdp model. The next section describes severalmethods for �nding approximately optimal policies and provides evidencethat all perform comparably on a collection of extremely small problems. Ofthese, a simple approach based on solving the underlying mdp is clearly themost time e�cient. None of these approaches can solve two slightly largernavigation problems and so the next section presents a more successful hy-2
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brid approach that seeds learning using the Q values of the underlying mdp.The concluding section considers a class of problems that require a richerrepresentation for policies and presents preliminary results on a techniquefor learning such policies.2 Partially Observable Markov Decision Pro-cessesThis section reviews the operations research literature on pomdp's.2.1 De�nitions And ExampleA pomdp is a tuple < S;A; T;R;O;
 > where S is a set of states, A a set ofactions, and 
 a set of observations. We will only consider the case in whichthese sets are �nite.The functions T andR de�ne a Markov decision process (mdp) [Bertsekas, 1987]with which the agent interacts without direct information as to the currentstate. The transition function, T : S � A ! �(S), speci�es how the vari-ous actions a�ect the state of the environment. (�(�) represents the set ofdiscrete probability distributions over a �nite set.) The agent's immediaterewards are given byR : S�A! R. The agent's decisions are made based oninformation from its sensors (observations) formalized by O : S�A! �(
).Our goal in this work is to take a pomdp and �nd a policy, which is astrategy for selecting actions based on the information available to the agent,that maximizes an in�nite-horizon, discounted optimality criterion.Figure 1 depicts a tiny navigation pomdp that we use for explanatorypurposes. It consists of 13 states (4 possible orientations in each of 3 roomsand a goal state which is denoted by a star), 9 observations (relative locationof the surrounding walls, plus \star"), and 3 actions (forward, rotate left,rotate right). The problem is intended to model a robot in a simple o�ceenvironment. In the �gure, the robot symbol occupies the \East in Room a"state. The agent's task is to enter the room marked with the star, at whichpoint it receives a reward of +1. After receiving the reward, the agent's nextaction transports it at random into one of the 12 non-goal states. Otherwise,transitions and observations are deterministic in this example.3
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a

cbFigure 1: A tiny navigation environment.2.2 The Belief MdpIn the tiny navigation environment, the immediate observations do not sup-ply enough information for the agent to disambiguate its location nor arethey su�cient for indicating the agent's best choice of action. For example,if the agent sees a wall behind it and to its left, it might be in \North inRoom b" (optimal action is to turn right) or \South in Room c" (optimalaction is to go forward to the goal).Some form of memory is necessary in order for our agent to choose itsactions well. Although many architectures are possible, one elegant choiceis to maintain a probability distribution over the states of the underlyingenvironment. We call these distributions belief states and use the notationb(s) to indicate the agent's belief that it is in state s when the current beliefstate is b 2 �(S). Using the model, belief states can be updated based on theagent's actions and observations in a way that makes the beliefs correspondexactly to state occupation probabilities.From a known starting belief state, it is easy to use the transition and ob-servation probabilities to incorporate new information into the belief state [Cassandra et al., 1994].As an example, consider an agent that is started in any of the 12 non-goalstates of the tiny navigation environment with equal probability: b(s) = 1=12for all non-goal states. If the agent chooses to turn right and then sees wallsin front of it and to its right, only two states are possible:b( South in Room b ) = b( North in Room c ) = 1=2 :After next moving forward and seeing walls in all directions except behind,the agent is sure of where it is:b( North in Room a ) = 1:4
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Since the agent's belief state is an accurate summary of all the rele-vant past information, it is a su�cient statistic for choosing optimal ac-tions [Bertsekas, 1987]. That is, an agent that can choose the optimal actionfor any given belief state is acting optimally in the environment.An important consequence is that the belief states, in combination withthe updating rule, form a completely observable Markov decision process(mdp) with a continuous state space, similar to problems addressed in thereinforcement-learning literature [Moore, 1994]. Our goal will be to �nd anapproximation of the Q function over the continuous space of belief statesand to use this as a basis for action in the environment. We restrict ourattention to stationary, deterministic policies on the belief state, since thisclass is relatively simple and we are assured that it includes an optimalpolicy [Ross, 1983].2.3 Piecewise-Linear Convex FunctionsA particularly powerful result of Sondik's is that the optimal value functionfor any pomdp can be approximated arbitrarily well by a piecewise-linearand convex (pwlc) function [Smallwood and Sondik, 1973, Littman, 1994].Further, there is a class of pomdp's that have value functions that are exactlypwlc [Sondik, 1978]. These results apply to the optimal Q functions aswell: the Q function for action a, Qa(b) is the expected reward for a policythat starts in belief state b, takes action a, and then behaves optimally. Bychoosing the action that has the largest Q value for a given belief state, anagent can behave optimally.Pwlc functions are particularly convenient because of their representa-tional simplicity. If Qa(b) is a pwlc function, then Qa(b) can be written:Qa(b) := maxq2La q � bfor some �nite set of jSj-dimensional vectors, La. That is, Qa is just themaximum of a �nite set of linear functions of b.So, although we are trying to �nd a solution to a continuous-space mdp,we have constraints on the form of the optimal Q functions that make thissearch a great deal simpler. 5
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3 Some Solution Methods For POMDP'SThis section sketches several methods for �nding linear or pwlc approxima-tions to the optimal Q functions for pomdp's. The goal in each of them isto �nd Q functions that can be used to generate good behavior; that is, wewill judge the methods by the policies they produce and not by the accuracywith which they estimate the optimal Q values. None of these methods areentirely original, but none have been used to �nd fast approximations tooptimal policies for pomdp's given the pomdp models.3.1 Truncated Exact Value IterationThe Witness algorithm [Cassandra et al., 1994, Littman, 1994] �nds exactsolutions to discounted �nite-horizon pomdp's using value iteration. Af-ter its k-th iteration, the algorithm returns the exact k-step Q functionsas collections of vectors, La, for each action, a. The algorithm can beused to �nd arbitrarily accurate approximations to the optimal in�nite-horizon Q functions and therefore policies that are arbitrarily close to opti-mal [Williams and Baird, 1993].Unfortunately, the algorithm can take many, many iterations to �nd anapproximately optimal value function, and for problems with a large numberof observations, the size of the La sets can grow explosively from iterationto iteration. Nonetheless, it is often the case that a near-optimal policy isreached long before the Q values have converged to their optimal values, sotruncating the value iteration process prematurely can still yield excellentpolicies. We call this approach \truncated exact value iteration" and denoteit as Trunc-VI.3.2 The QMDP Value MethodAnother natural approach to �nding Q functions for pomdp's is to make useof the Q values of the underlying mdp. That is, we can temporarily ignorethe observation model and �nd the QMDP(s; a) values for the mdp consistingof the transitions and rewards only. These values can be computed extremelye�ciently for problems with dozens to thousands of states and a variety ofapproaches are available [Puterman, 1994].With the QMDP values in hand, we can treat all the QMDP values for eachaction as a single linear function and estimate the Q value for a belief state6
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b as Qa(b) = Ps b(s) QMDP(s; a). This estimate amounts to assuming thatany uncertainty in the agent's current belief state will be gone after the nextaction. Thus, the action whose long-term reward from all states (weightedby the probability of occupying the state) is largest will be the one chosenat each step.Policies based on this approach can be remarkably e�ective. One draw-back, though, is that these policies will not take actions to gain information.For instance, a \look around without moving" action and a \stay in placeand ignore everything" action would be indistinguishable with regard to theperformance of policies under an assumption of one-step uncertainty. Thiscan lead to situations in which the agent loops forever without changingbelief state.3.3 Replicated Q-LearningChrisman (1992) and McCallum (1992) explored the problem of learninga pomdp model in a reinforcement-learning setting. At the same time thattheir algorithms attempt to learn the transition and observation probabilities,they used an extension of Q-learning [Watkins, 1989] to learn approximateQ functions for the learned pomdp model. Although it was not the emphasisof their work, their \replicated Q-learning" rule is of independent interest.Replicated Q-learning generalizes Q-learning to apply to vector-valuedstates and uses a single vector, qa, to approximate the Q function for eachaction a: Qa(b) = qa � b. For many pomdp's, a single vector per action is notsu�cient for representing the optimal policy. Nonetheless, this approxima-tion is simple and can be remarkably e�ective.The components of the vectors are updated using�qa(s) = � b(s)(r + maxa0 Qa0(b0)� qa(s)) :The update rule is evaluated for every s 2 S each time the agent makes astate transition; � is a learning rate, b a belief state, a the action taken,r the reward received, and b0 the resulting belief state. This rule appliesthe Q-learning update rule to each component of qa in proportion to theprobability that the agent is currently occupying the state associated withthat component.By simulating a series of transitions from belief state to belief state andapplying the update rule at each step, this learning rule can be used to solve7
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a pomdp. If the observations of the pomdp are su�cient to ensure that theagent is always certain of its state (i.e., b(s) = 1 for some s at all times), thisrule reduces exactly to standard Q-learning and can be shown to converge tothe optimal Q function under the proper conditions [Jaakkola et al., 1994,Tsitsikilis, 1994].The rule itself is an extremely natural extension of Q-learning to vector-valued state spaces, since it basically consists of applying the Q-learningrule at every state where the magnitude of the change of a state's value isproportional to the probability the agent is in that state. In fact, in additionto its use by Chrisman and McCallum, an elaboration of this rule is usedby Connell and Mahadevan (1993) for solving a distributed-representationreinforcement-learning problem.Although replicated Q-learning is a generalization of Q-learning, it doesnot extend correctly to cases in which the agent is faced with signi�cantuncertainty. Consider a pomdp in which the optimal Q function can berepresented with a single linear function. Since replicated Q-learning in-dependently adjusts each component to predict the moment-to-moment Qvalues, the learning rule will tend to move all the components of qa towardthe same value.3.4 Linear Q-LearningLinear Q-learning is extremely similar to replicated Q-learning but insteadof training each component of qa toward the same value, the components ofqa are adjusted to match the coe�cients of the linear function that predictsthe Q values. This is accomplished by applying the delta rule for neural net-works [Rumelhart et al., 1986], which, adapted to the belief mdp framework,becomes: �qa(s) = � b(s)(r + maxa0 Qa0(b0)� qa � b) :Like the replicated Q-learning rule, this rule reduces to ordinary Q-learningwhen the belief state is deterministic.In neural network terminology, linear Q-learning views fb; r+maxa0 Qa0(b0)gas a training instance for the function Qa(�). Replicated Q-learning, in con-trast, uses this example as a training instance for the component qa(s) forevery s. We should expect the rules to behave di�erently when the com-ponents of qa need to have widely di�erent values to solve the problem athand. 8
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Name jSj jAj j
j NoiseShuttle [Chrisman, 1992] 8 3 5 T/OCheese Maze [McCallum, 1992] 11 4 7 {Part Painting [Kushmerick et al., 1993] 4 4 2 T/O4x4 Grid [Cassandra et al., 1994] 16 4 2 {Tiger [Cassandra et al., 1994] 2 3 2 O4x3 Grid [Parr and Russell, 1995] 11 4 6 TTable 1: A suite of extremely small pomdp's.Like replicated Q-learning, linear Q-learning has the limitation that onlylinear approximations to the optimal Q functions are considered. In general,this can lead to policies that are arbitrarily poor, although this does notappear to be true for the extremely small pomdp's we studied.Note that, since the transition probabilities and rewards are known, it ispossible to perform full backups instead of the sampled backups used in tra-ditional Q-learning. The relationship between these two methods is discussedin a later section of the paper.3.5 Empirical Comparison On Extremely Small Prob-lemsWe ran each of the above methods on a battery of pomdp's selected fromthe literature, summarized in Table 1. Detailed descriptions of all of theseproblems are given in the appendix.Interestingly, all 6 pomdp's have the property that optimal policies pe-riodically reset to a problem-speci�c belief state. We used a discount factorof 0:95 for all problems. The column of Table 1 labeled \Noise" indicateswhether there is noise in the transitions, observations, or both.For the experiments on truncated exact value iteration, we ran the exactalgorithm for approximately 100 seconds and used the output of the lastcomplete iteration as a solution.The learning approaches have a large number of free parameters whichwe did not optimize carefully for either speed or performance. For each of 21runs, we performed 75,000 steps of learning starting from the problem-speci�cbelief state which is shown in the appendix. During learning, actions wereselected to maximize the current Q functions with a 0:1 probability of being9
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Shuttle Cheese Maze Part Painting 4x4 Grid Tiger 4x3 GridTrunc VI 1:805 � 0:014 0:188 � 0:002 0:179 � 0:012 0:193 � 0:003 0:930 � 0:205 0:109 � 0:005QMDP 1:809 � 0:012 0:185 � 0:002 0:112 � 0:016 0:192 � 0:003 1:106 � 0:196 0:112 � 0:005Repl Q 1:355 � 0:265 0:175 � 0:017 0:003 � 0:005 0:179 � 0:013 1:068 � 0:047 0:080 � 0:014Linear Q 1:672 � 0:121 0:186 � 0:000 0:132 � 0:030 0:141 � 0:026 1:074 � 0:046 0:095 � 0:007optimal | 0:186 � 0:002 0:170 � 0:012 0:192 � 0:002 1:041 � 0:180 |Table 2: Results of pomdp solution methods on the suite of extremely smallproblems.overridden by a uniform random action. The learning rate was decreasedaccording to the following schedule: 0.1 for steps 0 to 20,000, 0.01 from20,000 to 40,000, 0.001 from 40,000 to 60,000, and then 0.0001 thereafter.The qa(s) component values were initialized to random numbers uniformlychosen between �20:0 and +20:0. The parameter values were chosen byinformally monitoring the performance of linear Q-learning on several of theproblems.Each method returned a set of vectors that constitute linear or pwlc ap-proximations of the Q functions. An agent that chooses actions to maximizethe Q functions was then simulated to evaluate the quality of the inducedpolicy. Each simulation started with the agent in the problem-speci�c beliefstate and ran for 101 steps. This procedure was repeated 101 times and theperformance is reported as the mean reward received with a 95% con�denceinterval.Table 2 reports the results. The data for the two learning algorithms arepooled over 21 independent experiments. For four of the problems, we wereable to compute the optimal Q functions using the Witness algorithm in 25to 120 minutes. We then simulated the optimal vectors to obtain the rowmarked \optimal" in the table. The two other problems possibly do not havepwlc optimal Q functions.The most overwhelming result is that almost every method on almost ev-ery problem achieves practically optimal performance. Truncated exact valueiteration is always statistically indistinguishable from optimal and tends todo no worse than the QMDP value method. The QMDP value method tendsto do no worse than linear Q-learning which tends to do no worse than repli-cated Q-learning. The QMDP value method, which consistently performedquite well, was the most time-e�cient algorithm, requiring not much morethan half a second on any problem. The learning algorithms, by contrast,10
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Name Repl-Q Lin-Q QMDP OptimalShuttle 30 30 0.10 |Cheese Maze 46 46 0.21 1500Part Painting 18 18 0.10 70004x4 Grid 75 75 0.54 7000Tiger 12 12 0.06 70004x3 Grid 44 44 0.25 |Table 3: Approximate running times for extremely small pomdp's (in sec-onds).took between 16 seconds and 80 seconds, depending mostly on the size ofthe problem. The truncated exact value iteration algorithm always took 100seconds, by design. Table 3 summarizes the approximate running times forthe various algorithms.There are two signi�cant exceptions to the overall performance trendshown in Table 2: the QMDP value method was worse than linear Q-learningon the part-painting problem and linear Q-learning was worse than repli-cated Q-learning on the 4x4 problem. The former is a result of the QMDPvalue method not choosing actions to gain information, which are necessaryfor optimal behavior in this problem. The latter occurs because of the deter-minism in the state transitions and the relatively small probability of takingrandom exploratory actions; this problem can be easily �xed by adjusting theprobability of taking a random action. This combination of determinism andlack of exploration can cause the goal to be infrequently visited during learn-ing in cases where the random initial policy leads to cyclic behavior. Thiswas veri�ed by stepping through the learning algorithm in those sub-optimalcases and observing the cyclic behavior.To provide further evidence that cyclic behavior was causing the poorresults, we ran the entire set of experiments a second time with an increasedrate of exploration. In the results shown in Table 4 came from experimentsthat were identical in all parameters except the exploration probability. Inthese experiments there was a 0:25 probability that a random action wouldbe chosen. 11



www.manaraa.com

Shuttle Cheese Maze Part Painting 4x4 Grid Tiger 4x3 GridTrunc VI 1:805 � 0:014 0:188 � 0:002 0:179 � 0:012 0:193 � 0:003 0:930 � 0:205 0:109 � 0:005QMDP 1:809 � 0:012 0:185 � 0:002 0:112 � 0:016 0:192 � 0:003 1:106 � 0:196 0:112 � 0:005Repl Q X �X X �X X �X X �X X �X X �XLinear Q X �X X �X X �X X �X X �X X �Xoptimal | 0:186 � 0:002 0:170 � 0:012 0:192 � 0:002 1:041 � 0:180 |Table 4: Results of pomdp solution methods using higher exploration prob-ability.
31 2Figure 2: Navigation environment with 57 states.4 Handling Larger POMDP'S: A Hybrid Ap-proachIt is worth asking whether the results of the previous section apply to largeror more complicated domains. We constructed two pomdp's designed tomodel a robot navigation domain, shown in Figures 2 and 3.One environment has 57 states (14 rooms with 4 orientations each, plusa goal) and 21 observations (each possible combination of the presence ofa wall in each of the 4 relative directions, plus \star" and three landmarksvisible when the agent faces south in three particular locations). The otherhas 89 states (4 orientations in 22 rooms, plus a goal) and 17 observations(all combinations of walls, plus \star"). Both include 5 actions (stay inplace, move forward, turn right, turn left, turn around) and have extremelynoisy transitions and observations. The appendix gives the full details ofthe dynamics of these environments, including transition and observationprobabilities.We ran the same collection of algorithms on these two environments witha slight change: truncated exact value iteration was given roughly 1000 sec-onds. This increase in time compensates for the longer running times re-quired by the learning algorithms on these environments. Performance wasmeasured slightly di�erently. The policies were evaluated for 251 trials, eachconsisting of a run from the problem-speci�c initial belief state to the goal.12
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Figure 3: Navigation environment with 89 states.57 states 89 statesgoal% median goal% medianTrunc VI 62.9 150 44.6 > 251QMDP 47.4 > 251 25.9 > 251Repl Q 5.2 > 251 2.8 > 251Linear Q 8.4 > 251 5.2 > 251Table 5: Results of pomdp solution methods on the two navigation environ-ments.For these two environments the initial belief state was a uniform distributionover all states except the goal state. If the agent was unable to reach thegoal in 251 steps, the trial was terminated.Table 5 reports the percentage of the 251 runs in which the agent reachedthe goal and the median number of steps to goal over all 251 runs. For thelearning algorithms, performance was measured as a median of 21 indepen-dent runs.This time, none of the approaches gave even passable results, with manytest runs never reaching the goal after hundreds of steps. Truncated exactvalue iteration was able to complete two iterations in about 4 seconds andmade no additional progress for up to 1500 seconds. The QMDP value methodis deterministic, so the reported results are based on the best policy it canachieve. The learning approaches have the capability of adapting and im-proving but are unable to reach the goal state often enough to learn anythingat all. Thus, all 4 methods fail, but for di�erent reasons.This suggests the possibility of a hybrid solution. By computing theQMDP values and using them to seed the qa vectors for learning, we can take13
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57 states 89 statesgoal% median goal% medianRepl Q 72.9 21 10.8 > 251Linear Q 96.0 15 58.6 51Human 100.0 15 100.0 29QMDP-no stay 100.0 16 57.8 40Random Walk 46.2 > 251 25.9 > 251Table 6: Results of pomdp solution methods when seeded with the QMDPvalues on two navigation environments.advantage of the strengths of both approaches. In particular, the hope isthat the QMDP values can be computed quickly and then improved by thelearning algorithms.Table 6 summarizes the results of initializing the two learning algorithmsusing the QMDP values in place of random vectors. Training and testingprocedures followed those of the other navigation experiments.In both environments, the linear Q-learning algorithm was able to use theinitial seed values to �nd a better policy (almost doubling the completionpercentage and halving the steps to the goal). The replicated Q-learningalgorithm, on the other hand, actually made the performance of the QMDPvalue method worse.The performance of the hybrid algorithm appears quite good. However,the complexity of the navigation environments makes direct comparison withan optimal policy out of the question. To get a qualitative sense of the di�-culty, we created an interactive simulator for the two navigation environmentswhich included a graphical belief state display. A single human subject (oneof the authors) practiced using the simulator and then carried out testingtrials with the results reported in Table 6. In the smaller environment, thetesting period lasted for 45 trials and the longest run was 57 steps. Themedian performance of 15 steps per trial is exactly the same as that of thehybrid algorithm. In the larger environment, the testing period lasted for31 trials and the longest run was 73 steps indicating substantial room forimprovement in the existing algorithms.After further study, we discovered that the primary reason for the poorperformance of the straight QMDP value method is that the agent chooses the\stay in place" action in some belief states and sometimes becomes trappedin a cycle. As a test of this hypothesis, we removed this action from the14
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57 states 89 statesgoal% median goal% medianLinear Q 99.2 14 83.7 33Table 7: Experiments using 500; 000 learning steps.set of actions that can be chosen by the QMDP value method and reranthe evaluation with results given in Table 6. Surprisingly, decreasing theset of options helped the QMDP value method reach a level of performancecomparable to that of linear Q-learning. Thus, the learning algorithm appliedto the navigation environments may be retaining the important parts of theQMDP policy while simply learning to suppress the \stay in place" action|areasonable approach to attaining good performance on these pomdp's. Forcomparison purposes, we have included the performance of a random walkpolicy where actions (except \stay in place") are chosen randomly.The results in Table 6 were for our initial experiments using 75; 000 learingsteps. The nature of the algorithm is such that it can improve over time, sothe natural question is what happens when we run the algorithm for longerperiods. We wouldn't expect the 57 state problem results to improve much,but there is considerable room for improvement on the 89 state example.Table 7 shows the results of running the Linear-Q learning algorithm for500; 000 steps. The learning rate was the same as the original experiments,though the exploration probability was 0:2 for these experiments. These wereonly based upon 11 independent experiments and used the QMDP values asinitial values.Table 7 shows that allowing more learning steps leads to better perfor-mance, most importantly, it shows that learning algorithms can do betterthan a policy which just suppresses the \stay-in-place" action. Some pre-liminary experiments have shown that even better performance could beachieved with a better learning rate adjustment schedule.Seeding linear Q-learning using the QMDP values leads to a promisingmethod of solving larger pomdp's than have been addressed to date. Below,we discuss some experiments that explore why this hybrid approach does sowell. 15
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4.1 Discussion of Biasing Initial ValuesAlthough the use of the QMDP values helps the learning algorithms signif-icantly, we would like to understand exactly what aspect of this bias con-tibutes to the improvement. There are three possible explanations: the QMDPvalues specify a policy that gets the agent to the goal more often allowingfaster learning; the QMDP values are merely in the proper neighborhood ofsome good �nal values; or it could be some complicated interaction of bothof these.Getting to the goal more frequently is an important factor in the rate atwhich it can learn in these environments, since the only reward received isat the goal. If the starting values are a signi�cant distance from the goodvalues, there might not be enough experiences or the learning rate mightnot be su�cient enough to bring these values into the correct range. Thisillustrates the complicated interaction between the initial policy, the initialvalues, the learning rate and the exploration rate. Thus, it is not immediatelyclear which factors are most signi�cant, nor is it clear exactly how theseinteract with one another.To explore this issue, we made a signi�cant change the the experimentalsetup. We would now keep two sets of vectors as the simulations progressed.The �rst set would be the QMDP values, which we would use to determine theactions to take. The second set were randomly initialized, as in the �rst setof experiments, and would be the values that were actually updated. Thus,we separated the policy from the values being updated.This setup was not the ideal, since our policy is not able to improve overtime as it could in the learning experiments. If the values being updatedwere to ever specify a policy that was better than the policy speci�ed by theQMDP, then continuing with the latter policy would be handicapping this setof experiments. However, running these experiments showed that the learnedpolicy never approached the quality of the policy for the original QMDP valuesas shown in Table 8. For this experiment we ran only 11 independent trialson the 57 state example and used a learning rate of 0:1 for the �rst 50; 000steps and 0:01 for the remaining 25; 000 steps. Since the learning rate isdi�erent from the previously presented results, we also show the results forusing the random values only at this new learning rate in the table and nosigni�cant improvement results. For the separation of policy and values, therandom values were within the range �20 to +20.As can be seen in Table 8, the policy speci�ed by the QMDP are not solely16
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57 statesgoal% medianQMDP 47:4 > 251Linear Q (Random values/policy �20 to +20) 15:5 > 251Linear Q (QMDP policy and random values) 1:6 > 251Table 8: Result of separating the policy from the updated values.responsible for the the good results of the hybrid algorithm. To understandwhat role the initial values played in the hybrid algorithm, we used randominitial values and policy as before, except this time we restricted the range ofstarting random values to be within the range of the QMDP values, +1:0 to+2:5. Using the same experimental setup we ran 8 independent experimentsand found the performance to be as good as when we seeded it with theQMDP values: the goal was reached 99% of the time and there was a medianof 14:5 steps to the goal. This data shows that the actual QMDP policy is oflittle or no help in the hybrid algorithm, and that the initial range of valuesis what is most important.This result does not negate the usefulness of the hybrid algorithm, sincethe QMDP present a disciplined technique for �nding a good range of valuesfor initialization. However, an open question is whether the actual values areimportant or is it merely the relative values of the vectors. If the values allstart in the same small range, then the small changes made to the values inthe learning algorithm, can modify the policy signi�cantly. It could be thatany small random initial interval of values would work as well as the +1:0 to+2:5 range has. We have not yet explored this issue.The importance of the the initial values is directly tied to the learningrate. In the original experiments (�20 to +20) the learning rate is not largeenough to quickly bring some of the extreme values to within the usefulrange. Since the learning rate decays, initial values at the extreme points ofthe initial starting range might not have progressed much in the directionthat the gradient is trying to push them. Thus, it would seem that a moreliberal learning rate could potentially lead to good performance even whenthe initial values are far from decent �nal values.In our attempt to explore this issue, we ran experiments with di�erentlearning rates with the goal of trying to get the learning algorithm to producegood results when the initial values where in the range �20 to +20. At ouroriginal learning rate schedule, this range of initial values produced very poor17
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results.This set of experiments proved quite di�cult, since even when we areonly considering the learning rate, the parameter space is quite large. Recallthat the learning rate is decayed in a step-wise manner. This results in theneed to set the learning rate for each step and to de�ne the intervals thateach step will be in e�ect. The interaction between these two aspects is quiteimportant and many di�erent settings were tried.Table 9 shows the performance of many settings for the learning rateschedule on the 57 state problem for 11 independent trials each. As can beseen, most of the settings did not give signi�cantly good results. However,the last one is remarkably good compared to the original results and not thatmuch worse than the hybrid algorithm's results. We stopped our parameterexploration with this example, since it seemed to demonstrate the point thatwas hypothesized.The conclusion to draw from all of this experimental exploration is thatthe basic Linear-Q learning algorithm can solve modest sized pomdp prob-lems, but that it could require a signi�cant amount of parameter tweaking.Getting the initial values in a good range to start with makes the algorithmless sensitive to the parameter settings and the QMDP values provide a disci-plined way to set these initial values.5 More Advanced RepresentationsNone of the algorithms reach the goal in the 89-state problem all the time:clearly optimal performance has not yet been reached. As discussed in Sec-tion 2.3, piecewise-linear convex functions can approximate the optimal Qfunctions as closely as necessary. In contrast, the linear approximations tothe Q-functions used by the learning algorithms can result in arbitrarily badapproximations.5.1 The Need for a More Advanced RepresentationTo drive this point home, we designed a navigation problem (see Figure 4)for which any linear approximation to the Q functions is guaranteed to besuboptimal. The parameters of the environment follow those of the naviga-tion environments discussed previously. There are two signi�cant di�erences:two rooms marked with minus signs in the �gure are associated with negative18
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learn 57 statesrate interval goal% median0.1 [0-50,000) 5.5 > 2510.01 [50,000-75,000)1.0 [0-10,000) 23.9 > 2510.1 [10,000-25,000)0.01 [25,000-50,000)0.001 [50,000-75,000]10.0 [0-1,000) 4.0 > 2511.0 [1,000-25,000)0.1 [25,000-50,000)0.01 [50,000-75,000)2.0 [0-1,000) 6.8 > 2511.0 [1,000-11,000)0.1 [11,000-31,000)0.01 [31,000-75,000)0.5 [0-2,500) 8.8 > 2510.1 [2,500-15,000)0.05 [15,000-35,000)0.01 [35,000-75,000)0.5 [0-5,000) 13.5 > 2510.1 [5,000-25,000)0.05 [25,000-40,000)0.001 [40,000-75,000)0.5 [0-25,000) 83.7 22.00.1 [25,000-45,000)0.05 [45,000-55,000)0.001 [55,000-75,000)Table 9: Results for Linear-Q algorithm with various learning rate schedules.19
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- -Figure 4: A 33-state navigation environment that cannot be solved with asingle linear function per action.reward, and the agent starts with equal probability facing North in one orthe other of the two rooms marked with agent symbols in the �gure.An agent starting in the left start state should move forward, turn right,and move forward again. From the right start state, the agent should moveforward, turn left and move forward again. The di�culty is that the twoscenarios are distinguished only by the con�guration of walls in the initialstate, which can only be perceived if the agents chooses to stay in place fora step so that it may receive an observation for the initial state. Becauseactions precede observations, staying in place is an action to gain informationin this problem.The fact that the agent needs to take an action to gain information andthen execute the same action (forward) regardless of the outcome, is su�cientto destroy any single-vector-per-action approximation of the optimal policy.Although we understand the nature of this particular problem, a veryinteresting (and open) problem is how to determine the number of vectorsneeded to represent the optimal policy for any given pomdp.5.2 A PWLC Q-Learning AlgorithmA simple approach to learning a pwlc Q function is to maintain a set ofvectors for each action and use a competitive updating rule: when a newtraining instance (i.e., belief state/value pair) arrives, the vector with thelargest dot product is selected for updating. The actual update follows thelinear Q-learning rule. It is possible that the di�erent vectors will come tocover di�erent parts of the state space and thereby represent a more complexfunction than is possible with a single vector.To show the potential gain of utilizing multiple vectors per action, we ranexperiments on the 33-state navigation environment. We ran 21 indepen-20
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33 statesgoal% mediantrunc VI 39.8 > 251QMDP 17.9 > 251Linear Q 46.6 > 2513-pwlc Q 98.4 5QMDP-no stay 14.3 > 251Table 10: Results of pomdp solution methods on the specially-constructed33-state navigation environment.dent trials of 75,000 learning steps of linear Q-learning as well as truncatedexact value iteration and the QMDP value method. We compared these tothe 3-pwlc Q-learning algorithm, which uses the competitive approach de-scribed above with 3 vectors per action. In analogy to the hybrid algorithmof the previous section, we initialize all 3 vectors for each action with theappropriate QMDP values.The evaluation criterion was the same as for the 57 and 89-state navi-gation environment experiments. Table 10 shows the results and, as antici-pated, the single vector methods perform poorly.Although the 3-pwlc algorithm performs astonishingly well on this prob-lem, its performance on other problems has been inconsistent. The primarydi�culty is that noisy updates can cause a vector to \sink" below the othervectors. Since this approach only updates vectors when they are the largestfor some belief state, these sunken vectors can never be recovered. A relatedproblem plagues almost all competitive learning methods and in our informalexperiments, we found this to occur quite often. We have considered someextensions to address this problem, but we have not yet found a reliablesolution.A classic approach to the sunken-vector problem is to avoid hard \winner-take-all" updates. Parr and Russell (1995) use a di�erentiable approxima-tion of the max operator and �nd they can produce good policies for the4x4 and 4x3 grid problems. The approach is promising enough to warrantfurther study including comparisons on the di�cult navigation environmentsdescribed in this paper. 21
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6 Miscellaneous Issues6.1 Sample vs. Full BackupsIn the method proposed here, we use a model to generate the experiencesthat are used to update the values. Since we have the model, it is possibleto perform full backups instead of the sample backups used in traditionalQ-learning. The sample backup technique updates values based upon a sin-gle piece of experience, more speci�cally, based upon a single resulting state.However, when the model is known, we have access to all the possible out-comes (resulting states) and the probability of each of these occuring. Withthis information we can simulate many resulting states instead of just theactual resulting state.For a pomdp the full backup is computed using all the posible resultingbelief states, of which there are as many of these as number of observations.Thus the full backup version of the two learning algorithm update rulesbecome:�qa(s) = �b(s)(r + Xb0 Pfb0gmaxa0 Qa0(b0)� qa(s)) Repl-Q;�qa(s) = �b(s)(r + Xb0 Pfb0gmaxa0 Qa0(b0)� qa � b) Lin-Q:In these equations the sum over the resulting belief states, b0, is a notaionalsimpli�cation, since each resulting belief state is computed for each observa-tion from the current belief state, b, and the current action. The probabilityof each resulting belief state is computed with the same machinery used toupdate the belief state. See [Cassandra et al., 1994] for details on updatingbelief states.Although the full backup idea seems well motivated, there are some strongreasons why they were not utilized. In practice, using full backups greatlyincreases the running time. The increase is directly correlated with the num-ber of observations in the problem. The full backup rule requires us to sumover all observations, making each full backup much more expensive than asample backup. Table 11 show the timing comparisons for the sample andfull backups on each of the examples shown in this paper. Notice the e�ectof the number of observations on the running times.Although the increase in timing is dramatic, it isn't reason enough to ruleit out as a viable method for solving these problems. In our experiments,22
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Name Sample Full j
jShuttle 30 115 5Cheese Maze 46 250 7Part Painting 18 28 24x4 Grid 75 270 2Tiger 12 21 24x3 Grid 44 270 657 State 820 25500 2189 State 1910 53300 1733 State 280 6750 17Table 11: Timing comparisons for full and sample backups (seconds).though, we could discern no increase in performance for the full backuptechniques using our initial experimental set-up.Simply runnning the experiments for the same number of steps wouldnot be su�cient to claim that full backups were no better than sample back-ups, since the full backups may improve the policy faster than the samplebackup techniques. We explored the rate of improvement using the smallproblems to gauge whether or not full backups could get good policies fasterthan sample backups. Figures 5 through 16 shows the performance pro�lesfor each of the small problems using two ranges for each problem. The x-axis is the number of learning updates, while the y-axis is the average rewardreceived. These pro�les were generated by periodically interrupting the learn-ing algorithm and performing the evaluation simulation. Although there areinstances where full backups seem better, there are also some where theywere no better or even worse. The minor gains shown by this data, did notseem to justify the signi�cant amount of extra computational time requiredto perform the full backups. This is not conclusive though, since these spe-ci�c problems are not necessarily representative of the interesting problemsthat would actually need to be solved.One �nal reason why we chose not to explore full backups further, is thatit seems to contradict one of the motivations for using simulations to learnthe values. We argue that the space to be explored is huge, and that usingsimulations will focus the search on the interesting parts of the belief space.With the introduction of full backups, we will be considering belief stateswe have not yet visited, since we will need to sum over all possible nextbelief states. This could include many belief states that are unlikely; i.e., the23
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Figure 5: Performance pro�le of tiger problem for 2,500 steps.
Figure 6: Performance pro�le of tiger problem for 25,000 steps.
Figure 7: Performance pro�le of shuttle problem for 2,500 steps.24
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Figure 8: Performance pro�le of shuttle problem for 25,000 steps.
Figure 9: Performance pro�le of part painting problem for 2,500 steps.
Figure 10: Performance pro�le of part painting problem for 25,000 steps.25
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Figure 11: Performance pro�le of 4x4 grid problem for 2,500 steps.
Figure 12: Performance pro�le of 4x4 grid problem for 25,000 steps.
Figure 13: Performance pro�le of 4x3 grid problem for 2,500 steps.26
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Figure 14: Performance pro�le of 4x3 grid problem for 25,000 steps.
Figure 15: Performance pro�le of cheese maze problem for 2,500 steps.
Figure 16: Performance pro�le of cheese maze problem for 25,000 steps.27
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observation that leads to that belief state has low probability. The inclusionof unlikely belief states defeats one of the motivating points in favor of usingsimulations.However, a comprise approach could prove fruitful. If we do a partialbackup, considering only the most likely next belief states, we might beable to keep the run times reasonable, while increasing the rate that goodvalues are obtained. We have not explored this option, since it would requirea di�erent organization of the code to be able to e�ciently �nd the bestobservations, given a particular belief state.7 ConclusionsWe can now obtain high quality policies for a class of pomdp's with nearly100 states. We predict that these techniques can be honed to produce goodpolicies for a wide variety of problems consisting of hundreds of states. Butto handle the thousands of states needed to address realistic problems, othertechniques will be needed.Other approaches to scaling up, including various kinds of factoring anddecomposition of the transitions and belief states (e.g., the sort of approachBoutilier et al. (1995) and Nicholson and Kaelbling (1994) used in fully ob-servable domains), may be able to be used in concert with techniques de-scribed in this paper to yield practical results in moderately large pomdpproblems.A Detailed Problem DescriptionsFor each of the pomdp problems presented in this report, we give a short de-scription, its source and then a detailed description of the problem includingthe speci�c probabilities and rewards. For the extremely small problems weinclude the actual �les used in the experiments so that we can provide as pre-cise information as possible. Unfortunately, the format of these �les requiresexplanation, so we must �rst provide the description of this �le format.For all problems, we used a discount factor of 0:95 and state-action pairvalues were considered to be rewards, so that higher values are more desirable.Each of the problems has a notion of a goal to be reached. When this goalis reached, the problem is restarted using a problem speci�c belief state as28
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the initial belief state. These reset belief states are given below for each ofthe problems.A.1 File Format DescriptionSince we present the actual data �les used for most of the experiments, weneed to describe the format that was used for these �les. We begin thedesscription of the �le format with some notational conventions:� %f - a oating point number� %d - and integerComma separated items within brackets, e.g., [ a, b, c ] represent a choiceof one of these items. Everything from a '#' symbol to the end-of-line istreated as a comment. They can appear anywhere in the �le. Throughoutall de�nitions, whitespace (space, tab, newline) serves as a delimiter, withany amount of consecutive whitespace acting as a single delimiter.The following 5 lines must appear at the beginning of the �le. They mayappear in any order as long as they preceed all speci�cations of transitionprobabilities, observation probabilities and rewards.discount: %fvalues: [ reward, cost ]states: [ %d, list of states ]actions: [ %d, list-of-actions ]observations: [ %d, list-of-observations ]The de�nition of states, actions and/or observations can be either a num-ber indicating how many there are or it can be a list of strings, one for eachentry. These mnemonics cannot begin with a digit. For instance, both:actions: 4actions: north south east westwill result in 4 actions being de�ned. The only di�erence is that in thelatter the actions can then be referenced by the mnemonic name. Even whenmnemonic names are used, later references can use a number as well, though29
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it must correspond to the positional number in this list where the numberingstarts with 0. The numbers are assigned consecutively from left to right inthe listing starting with zero (e.g., the action 'south' is action number 1 inthe example above).When listing states, actions or observations one or more whitespace char-acters are the delimiters (space, tab or newline). When a number is giveninstead of an enumeration, the individual elements will be referred to byconsecutive integers starting at 0.After this preamble, there is the option of specifying a problem speci�cstarting state, or starting state distribution. If this starting state speci�cationdoes not appear, then the starting belief state will be a uniform distributionover all possible states. To specify a starting state there are three formatsthat can be used:start: %f %f : : : %fstart include: list-of-statesstart exclude: list-of-statesThe �rst form allows an explicit initial belief state de�nition, where theprobability for each state is given. Since this can be cumbersome for largestate spaces, the latter two provide more convenient speci�cations. The\start include" line allows you to specify a uniform distribution over only asubset of the states. The states can either be listed by number or mnemonic.The inclusion of a single state will result in certainty in the starting state.The \start exclude" mnemonic is similar, except it will de�ne a uniformdistribution over all the states that are not included in the state list thatfollows it.After the initial �ve lines and optional start state, the specii�cations ofprobabilities and rewards appears. These speci�cations may appear in anyorder, and can even be interleaved. Any probabilities or rewards not speci�edin the �le are assumed to be zero.You may also specify a particular probability or reward more than once.The de�nition that appears last in the �le is the one that will take a�ect,overriding any previous declarations. This is convenient for specifying excep-tions to general speci�cations.To specify an individual state transition probability:T: action : start-state : end-state : %f30
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Anywhere an action, state or observation can appear, you can also put thewildcard character '*' which means that this is true for all possible entriesthat could appear here. For example:T: 5 : * : 0 1.0is interpreted as action 5 always moving the system state to state 0, nomatter what the starting state was (i.e., for all possible starting states.)To specify a particular row of a transition matrix:T: action : start-state%f %f ... %fWhere there is an enter for each possible next state. This allows de�ningthe speci�c transition probabilities for a particular starting state only. In-stead of listing the numbers the mnemonic word uniform may appear. Inthis case, each transition for each next state will be assigned the probability1N , with N being the number of states. Again, an asterick in either the actionor start-state position will indicate all possible entries that could appear inthat position.To specify an entire transition matrix for a particular action:T: action%f %f ... %f%f %f ... %f...%f %f ... %fWhere each row corresponds to one of the start states and each columnspeci�es one of the ending states. Each entry must be separated from thenext with one or more white-space characters. The new-lines are just forformatting convenience and do not a�ect the �nal matrix results. The onlyrestriction is there must be NxN values speci�ed where 'N' is the number ofstates.In addition, there are a few mnemonic conventions that can be used inplace of the explicit matrix above:identity 31
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uniformNote that uniform means that each row of the transition matrix willbe set to a uniform distribution. The identity mnemonic will result in atransition matrix that leaves the underlying state unchanged for all possiblestarting states.To specify individual observation probabilities:O : action : end-state : observation %fThe asterick wildcard is allowed in any of the positions.To specify a row of a particular actions' observation probability matrix:O : action : start-state%f %f ... %fThis speci�es a probability of observing each possible observation for aparticular action and ending state. The mnemonic short-cut uniform mayalso appear in this place.To specify an entire observation probability matrix for an action:O: action%f %f ... %f%f %f ... %f...%f %f ... %fThe format is similiar to the transition matrices except the number ofentries must be NxO where 'N' is the number of states and 'O' is the numberof observations. Here too the uniform mnemonic can be substituted for anenire matrix. In this case it will assign each entry of each row the probability1Z , where Z is the number of possible observations.To specify individual rewards:R: action : start-state : end-state : observation %fFor any of the entries, an asterick for either state, action, observationindicates a wildcard that will be expanded to all existing entities.32
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There are two other forms to specify rewards:R: action : start-state : end-state%f %f ... %fThis speci�es a particular row of a reward matrix for a particular actionand start state. The last reward speci�cation form isR: action : start-state%f %f ... %f%f %f ... %f...%f %f ... %fwhich lets you specify an entire reward matrix for a particular action andstart-state combination.A.2 ShuttleThis problem is nearly identical to the one presented in [Chrisman, 1992],since it was obtained directly from a section of Lonnie Chrisman's code,whom was very gracious in sending it to us. It models a simple space shut-tle docking problem, where we must dock by backing up into one of twospace stations. The goal is to alternate between the two stations, deliveringsupplies. Alternatively, the goal can be view as trying to go to the stationwhich we have least recently visited. There are penalties for bumping intothe space station (trying to go forward while facing directly in front of it)and rewards for getting to the proper station (backing up into the station,which simulates docking). There is no reward or penalty for docking withthe most recently visited station, it just does not receive the reward it wouldhave if it docked with the proper, least recently visited station.Figure 17 shows this problem pictorially. There are three actions thatcan be chosen: go-forward, turn-around and backup. There are eight statesas depicted by the eight shuttles in Figure 17. The left-most and right-mostshow the shuttle states when it is docked in one of the two space stations.The most recently visited and least recently visited station are labelled withMRV and LRV respectively. It is an odd property of this problem that oncethe shuttle is docked in the LRV station, its next action actually appears33
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SPACE Near MRVNear LRVFigure 17: Chrisman's space shuttle docking problem.to take e�ect from the MRV station. This results because the least recentlyvisited station becomes the most recently visited station the instant you visitit; i.e., the LRV and MRV stations are e�ectively swapped. Thus, the backupaction when in the LRV station transitions to the docked in MRV stationstate.The penalty for bumping into the space station is �3; this occurs whenthe shuttle is adjacent and facing a station and chooses the go-forward action.The reward for correctly docking with the least recently visited station is +10;this occurs when the backup action is chosen when the suttle is adjacent, butfacing away from a station.Both the go-forward and turn-around actions are deterministic, but thereis noise in the backup action. If the shuttle is adjacent and facing a spacestation, then the backup action: has only a 0:3 probability of succeeding; a0:4 probability of having no e�ect; and has a 0:3 probability of acting likethe turn-around action. If the shuttle is in a station, then the backup actionwill deterministically leave the shuttle in the MRV station. When the shuttleis in one of the two states out in space (shown shaded in Figure 17), thenbackup succeeds with probability 0:8, has no e�ect with probability 0:1 andwith probability 0:1 has the same e�ect as a backup and turn-around actioncombination. Finally, when the shuttle is adjacent and facing away from thestation, it has a 0:7 probability of actually docking with the space stationand 0:3 probability of resulting in no change of state.There are �ve observation for this problem which correspond to what wemight see out the front window of the shuttle. We can either see one of thetwo space station in front of us, or we can see that we are docked in one ofthe two space stations, or we might not be able to see anything.The observations correponding to being docked are always seen with prob-34
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ability 1.0 when the shuttle actually is docked. When the shuttle is adjacentand facing a station, it deterministically observes that station. If it is adja-cent, but facing away from the station, it will deterministically see nothing.Therefore, the only interesting observation is what is observed from the spacepositions. When in the space states, there is a 0.7 probability that we willbe able to see the station in front of us and a 0.3 probability that we seenothing. Here is the complete �le speci�cation.# This is an example that appears in Lonnie Chrisman's# paper "Reinforcement Learning with Perceptual Aliasing:# The Perceptual Distinctions Approach", AAAI-92 The actual# values were sent to Michael Littman from Lonnie via email# and taken directly from Lonnie's code.# LRV - least recently visited, MRV - most recently visited# Backin up while docked has no effect (except to change LRV# to MRV) Turning around while docked, leaves you in front# of station, facing itdiscount: 0.95values: rewardstates: 8# 0 Docked in LRV# 1 Just outside space station MRV, front of ship# facing station# 2 Space facing MRV# 3 Just outside space station LRV, back of ship# facing station# 4 Just outside space station MRV, back of ship# facing station# 5 Space, facing LRV# 6 Just outside space station LRV, front of ship# facing station# 7 Docked in MRVactions: TurnAround GoForward Backupobservations: 5 35
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# 0 See LRV forward# 1 See MRV forward# 2 See that we are docked in MRV# 3 See nothing# 4 See that we are docked in LRVstart:0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0T: TurnAround0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0T: GoForward0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0T: Backup0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00.0 0.4 0.3 0.0 0.3 0.0 0.0 0.00.0 0.0 0.1 0.8 0.0 0.0 0.1 0.00.7 0.0 0.0 0.3 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.3 0.0 0.0 0.70.0 0.1 0.0 0.0 0.8 0.1 0.0 0.00.0 0.0 0.0 0.3 0.0 0.3 0.4 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 1.036
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O: *0.0 0.0 0.0 0.0 1.00.0 1.0 0.0 0.0 0.00.0 0.7 0.0 0.3 0.00.0 0.0 0.0 1.0 0.00.0 0.0 0.0 1.0 0.00.7 0.0 0.0 0.3 0.01.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0R: GoForward : 1 : 1 : * -3# R: GoForward : 7 : 6 : * -3 # What Chrisman specifiesR: GoForward : 6 : 6 : * -3 # What I think it should beR: Backup : 3 : 0 : * 10A.3 Cheese MazeThis problem is shown in Figure 18. There are four actions corresponding tomovement in the four compass directions. Movements that attempt to moveoutside the grid are considered to have no e�ect on the location. It is as if itmerely bumps into the wall and stays put. Movement is deterministic for allactions and a reward of 1.0 is given in the goal state only (zero reward forall other states.) The goal state is depicted with the star.There are 11 states, but only 7 observations. The observations correspondto what would be seen in all four directions immediately adjacent to thelocation and are deterministic so that only a single observation is possiblefrom any particular state. For example, states 5, 6 and 7 all appear identical,while states 0, 2 and 4 are all unique. The goal is its own unique observation.# The infamous cheese-maze example (well.. it isn't# much of a maze)discount: 0.95values: rewardstates: 11actions: N0 S0 E0 W0 37
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8 10Figure 18: McCallum's cheese maze problem.observations: 7start:0.100000 0.100000 0.100000 0.100000 0.1000000.100000 0.100000 0.100000 0.100000 0.100000 0.0T: N01.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.01.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.00.100000 0.100000 0.100000 0.100000 0.100000 0.1000000.100000 0.100000 0.100000 0.100000 0.0T: S00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.038
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0.0 1.0 0.0 0.0 0.0 0.0 0.00.0 0.0 1.0 0.0 0.0 0.0 0.00.0 1.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 1.0 0.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.00.0 0.0 0.0 0.0 1.0 0.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.00.0 0.0 0.0 0.0 0.0 1.0 0.00.0 0.0 0.0 0.0 0.0 0.0 1.0R: * : * : 10 : * 1.0A.4 Part PaintingThis problem is loosely based upon a problem formulated in [Kushmerick et al., 1993].There is a part that needs to be painted and shipped if it is not awed, orsimply rejected if it is awed. A awed part starts o� blemished, thoughpainting a part can hide the blemish.There are three state variables corresponding to whether the part is:awed, blemished or painted. The full state space becomes the cross productof these three variables, for a total of 8 states. However, since we assumethat parts start in one of only two of the states, four of these state are notneeded, since it is impossible for a part to attained that state from the twopossible starting states. The only two possible starting states are either thepart is awed and blemished or the part is not awed and not blemished. Inboth cases, the part starts o� unpainted.There are four possible actions: inspect, paint, ship or reject the part.Painting a part that is already painted will leave its state unchanged. Paintedan unblemished and non-awed part will result in an unawed, unblemishedand painted part with probability 0.9. Thus, there is a 0.1 probability thatthe painting process is not successful. The same goes for painting a awedand blemished part, except that if the painting is succesful (probability 0.9)then the part also become unblemished, with the paint hiding the blemish.Rejecting or shipping a part will result in either a penalty or reward of1, and the state being reset to correspond to a new part with one of the twopossible starting states with equal probability.41



www.manaraa.com

Inspecting a part does not change its state, it merely gives informa-tion about the part (i.e., an observation). There are only two observations:blemished and unblemished. Only the inspect action will yield any informa-tion, since all other actions result in a deterministic unblemished observation(which is the same as seeing nothing in these states.) Inspecting will observethe whether the part is blemished or unblemished part successfully with prob-ability 0.75, and with probability 0.25 result in the incorrect observation.# Problem based on example in some of Hanks and# Kushmerick's papers# BL - blemished, FL - flawed, PA painteddiscount: 0.95values: rewardstates: NFL-NBL-NPA NFL-NBL-PA FL-NBL-PA FL-BL-NPAactions: paint inspect ship rejectobservations: NBL BLstart:0.5 0.0 0.0 0.5T: paint : NFL-NBL-NPA : NFL-NBL-NPA0.1T: paint : NFL-NBL-NPA : NFL-NBL-PA0.9T: paint :NFL-NBL-PA : NFL-NBL-PA1.0T: paint : FL-NBL-PA : FL-NBL-PA1.0T: paint : FL-BL-NPA : FL-NBL-PA0.9 42
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T: paint :FL-BL-NPA : FL-BL-NPA0.1T: inspectidentityT: reject : *0.5 0.0 0.0 0.5T: ship : *0.5 0.0 0.0 0.5O: paint : * : NBL1.0O: inspect : NFL-NBL-NPA : NBL0.75O: inspect : NFL-NBL-NPA : BL0.25O: inspect : NFL-NBL-PA : NBL0.75O: inspect : NFL-NBL-PA : BL0.25O: inspect : FL-NBL-PA : NBL0.75O: inspect : FL-NBL-PA : BL0.25O: inspect : FL-BL-NPA : NBL0.25O: inspect : FL-BL-NPA : BL0.75 43
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O: ship : * : NBL1.0O: reject : * : NBL1.0R: ship : NFL-NBL-PA : * : *1.0R: reject : FL-BL-NPA : * : *1.0R: ship : NFL-NBL-NPA : * : *-1.0R: reject : NFL-NBL-NPA : * : *-1.0R: reject : NFL-NBL-PA : * : *-1.0R: ship : FL-NBL-PA : * : *-1.0R: ship : FL-BL-NPA : * : *-1.0A.5 4x4 GridThis problem consists of a simple 4 by 4 grid of locations. Movement is deter-ministic in the four compass directions, with no change of location occurringif it tries to move out of the grid. There is a single goal state in the south-east corner location where a reward of 1 is gained. All other states give zeroreward. The di�culty in this problem is that all states look exactly the same,except the goal state. Thus there are two observations: we deterministicallysee 'Nothing' if we are in any state besides the goal and deterministically seethe goal when we are in the goal location.44
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values: rewardstates: tiger-left tiger-rightactions: listen open-left open-rightobservations: tiger-left tiger-rightstart:0.5 0.5T:listenidentityT:open-leftuniformT:open-rightuniformO:listen0.85 0.150.15 0.85O:open-leftuniformO:open-rightuniformR:listen : * : * : * -1R:open-left : tiger-left : * : * -100R:open-left : tiger-right : * : * 10R:open-right : tiger-left : * : * 10R:open-right : tiger-right : * : * -10048
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+1

-1Figure 19: Russell's 4x3 maze problem.A.7 4x3 GridThis problem is nearly identical to that used in [Parr and Russell, 1995] andis shown in Figure 19. The only change was to remove the zero cost absorbingstate and replace the transitions to it with equally likely transitions to allnon-reward and non-penalty states. This has the e�ect of creating a resetafter getting a reward or penalty.There are 11 states in this problem as shown in Figure 19. Two of statesare special states where a reward or penalty is received (+1 or �1) andthe agent being reset afterwards. For all other states, a reward of �0:04 isincurred (i.e., a cost).There are four actions corresponding to movements in the four majorcompass directions. These movements succeed with probability 0.8, andwith 0.1 probability of moving perpendicular to the intended direction. Anymovement that would take the agent outside the grid, results in the agentstaying in the start location. For example, an attempt to move north fromthe extreme north-west location will result in a 0.9 probability that the agentstays in that location. This occurs because the north movement, probability0.8, and the west movement, probability 0.1 are not possible. There is stilla 0.1 probabilty that the agent will move east.There are six observations: four that correspond to whether or not thereis a wall directly to the east and west of the location and one each for thepositive reward, +1, state and the negative reward, �1 state. All of theseobservations are deterministic.# Russell and Norvig's 4x3 maze49
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# Rewards and penalties are associated with states, not actions.# The default reward/penalty is -0.04.# There is no discounting, but a there is an absorbing state that# + and - transition to automatically. The absorbing state cannot be exited.## States are numbered from left to right:## 0 1 2 3# 4 5 6# 7 8 9 10## I removed the absorbing state## The actions, NSEW, have the expected result 80% of the time, and# transition in a direction perpendicular to the intended on with a 10%# probability for each direction. Movement into a wall returns the agent# to its original state.## Observation is limited to two wall detectors that can detect when a# a wall is to the left or right. This gives the following possible# observations:## left, right, neither, both, good, bad, and absorb## good = +1 reward, bad = -1 penalty,discount: 0.95values: rewardstates: 11actions: n s e wobservations: left right neither both good badstart:0.111111 0.111111 0.111111 0.0 0.111111 0.111111 0.00.111112 0.111111 0.111111 0.111111T: n0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.050
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R: * : 5 : * : * -0.04R: * : 6 : * : * -1.0R: * : 7 : * : * -0.04R: * : 8 : * : * -0.04R: * : 9 : * : * -0.04R: * : 10 : * : * -0.04A.8 Larger ProblemsThe three larger problems (57, 89 and 33 states) are all based upon thesame framework and so we will describe this �rst. We will then discuss anydeviations from this basic scheme in the individual sections for each of thoseproblems.The basic idea behind these problems, is that there is an agent wander-ing around some o�ce building. We assume that the locations have beendiscretized so that there are a �nite number of locations where the agentcould be. The agent has a small �nite set of actions it can take, but theseonly succeed with some probability. Additionally, the agent is equipped withvery short range sensors to provide it only with information about whetherit is adjacent to a wall. These sensors also have the property that they aresomewhat unreliable and will sometime miss walls or see walls when thereare none. It can \see" in four directions: forward, backward, left and right.It is important to note that these observations are relative to the currentorientation of the agent. Unlike most of the previous problems where the lo-cations corresponded to states, in these problems the location and the agent'scurrent orientation comprise the states.There is a single goal location, which is the objective to be achieved by theagent. Since achieving the goal is the main concern, the goal location actuallyrequires only a single state, since we are not interested in the orientation whenit achieves the goal. Upon reaching the goal, the agent is reset randomlyamong the non-goal states.The location layouts are show in Figures 2, 3 and 4, but the actual statesconsist of 4 for each location, since this is the number of possible orientationswe allow the agent to have.The actions that can be chosen consists of the movements: forward, turn-left, turn-right, turn-around and no-op (stay-in-place). These action are53
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Initial OrientationFigure 20: Transition probabilities for the forward movement in larger prob-lems.
0.70 0.10

0.100.10

Initial OrientationFigure 21: Transition probabilities for the turn-left movement in larger prob-lems.relative to the current orientation of the agent. As mentioned, each of theactions is probabilistic and are shown in Figures 20 through 23. The no-opaction always succeeds in leaving the state unchanged.There are many states, where moving forward could be impossible, giventhe layout of the locations. In these cases, the probability mass for theimpossible next state, is collapsed into the probability of not changing state.The same goes for all other possible movement directions. For example,consider the situation where the agent has a wall to the front and the leftof it. Moving forward will result in no change of state with probability 0:9.This results because the successful forward movement, probability 0:8, isimpossible as is the erroneous left movement, which has probability 0:05.Thus these two probabilities are added to the prede�ned probability, 0:05,of having no state change. There will still be a 0:05 probability of slidingerroneously to the right and 0:25 probability for the two accidental backwardmovements. 54
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Initial OrientationFigure 22: Transition probabilities for the turn-right movement in largerproblems.
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Initial OrientationFigure 23: Transition probabilities for the turn-around movement in largerproblems. 55
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The observations are comprised of four independent sensors which areable to detect walls immediately (i.e., the adjacent locations only) in fourdirections. Each is not completely reliable, so that if there is a wall, it willdetect it with probability 0.9. If there is no wall, then it will mistakenly sensea wall with probability 0.05. Thus, from a given state, there are 16 possi-ble observations: 2 possible values, wall or no-wall, for 4 separate sensors.These sensors operate independently, so the probability for an observation iscomputed by multiplying the four individual probabilities.The goal state gives a reward of +1 and all other states give zero reward.In addition, there is an extra observation, that corresponds to observingthe goal. This observation is only possible in the goal state and occursdeterministically.A.8.1 57 StatesTo the basic structure, this problem adds three more observations. These ob-servations correspond to three distinct landmarks in the environment. Thereare three states where the agent will deterministically see one of these land-marks, which will fully disambiguate its location. The locations are indicatedin Figure 2 and the landmark observations are made only when the agentis facing south in those locations. These landmarks are a remaining artifactfrom exploration of some other ideas.A.8.2 89 StatesThis problem conforms exactly to the description layed out previously, novariation on rewards or observations has been made.A.8.3 33 StatesThis problem deviates from the initial set-up it two ways. First, the startingbelief state and the belief state it resets to is not uniform over all non-goal states. Instead it is uniform over two particular state as depicted inFigure 4. The other change is in the addition of penalties. �1:0, for the twoupper corner states. These modi�cation where made to bring out a certaincharacteristic of the problem. 56
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