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Abstract

Partially observable Markov decision processes (POMDP’s) model
decision problems in which an agent tries to maximize its reward in
the face of limited and/or noisy sensor feedback. While the study of
POMDP’s is motivated by a need to address realistic problems, exist-
ing techniques for finding optimal behavior do not appear to scale well
and have been unable to find satisfactory policies for problems with
more than a dozen states. After a brief review of POMDP’s, this paper
discusses several simple solution methods and shows that all are capa-
ble of finding near-optimal policies for a selection of extremely small
POMDP’s taken from the learning literature. In contrast, we show that
none are able to solve a slightly larger and noisier problem based on
robot navigation. We find that a combination of two novel approaches
performs well on these problems and suggest methods for scaling to
even larger and more complicated domains.

www.manaraa.com



1 Introduction

Mobile robots must act on the basis of their current and previous sensor
readings. In spite of improvements in technology, a robot’s information
about its surroundings is necessarily incomplete: sensors are imperfect, ob-
jects occlude one another from view, the robot might not know its initial
status or precisely where it is. The theory of partially observable Markov
decision processes (POMDP’s) [Astrom, 1965, Smallwood and Sondik, 1973,
Cassandra et al., 1994] models this situation and provides a basis for com-
puting optimal behavior.

A variety of algorithms exist for solving POMDP’s [Lovejoy, 1991], but be-
cause the problem is so computationally challenging [Papadimitriou and Tsitsiklis, 1987],
most techniques are too inefficient to be used on all but the smallest problems
(2 to 5 states [Cheng, 1988]). Recently, the Witness algorithm [Cassandra, 1994,
Littman, 1994] has been used to solve POMDP’s with up to 16 states. While
this problem size is considerably larger than prior state of the art, the algo-
rithm is not efficient enough to be used for larger POMDP’s.

Thus, the generality and expressiveness of the POMDP framework comes
with a cost: only extremely small problems can be solved using available
techniques. This paper is an incremental attempt at narrowing the gap
between promise and practice. Using reinforcement-learning techniques and
insights from the POMDP literature, we show how a satisfactory policy can
be found for a POMDP with close to 100 states and dozens of observations.

We assume that a complete and accurate model of the state transition dy-
namics is given and use various techniques to construct a policy that achieves
high reward. Even with these restrictions, the problem of finding optimal be-
havior is still too difficult and we have chosen to simplify it in several respects.
First, we will be satisfied if we can find reasonably good suboptimal policies.
Secondly, our training and testing is done using simulated runs from a fixed
initial distribution, limiting the set of situations for which the algorithms
need to find good behavior.

The structure of the paper is as follows. The introduction summarizes for-
mal results concerning the POMDP model. The next section describes several
methods for finding approximately optimal policies and provides evidence
that all perform comparably on a collection of extremely small problems. Of
these, a simple approach based on solving the underlying MDP is clearly the
most time efficient. None of these approaches can solve two slightly larger
navigation problems and so the next section presents a more successful hy-
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brid approach that seeds learning using the () values of the underlying MDP.
The concluding section considers a class of problems that require a richer
representation for policies and presents preliminary results on a technique
for learning such policies.

2 Partially Observable Markov Decision Pro-
cesses

This section reviews the operations research literature on POMDP’s.

2.1 Definitions And Example

A POMDP is a tuple < S, A, T, R, O, ) > where S is a set of states, 4 a set of
actions, and €) a set of observations. We will only consider the case in which
these sets are finite.

The functions T and R define a Markov decision process (MDP) [Bertsekas, 1987]
with which the agent interacts without direct information as to the current
state. The transition function, T : § x A — II(5), specifies how the vari-
ous actions affect the state of the environment. (II(-) represents the set of
discrete probability distributions over a finite set.) The agent’s immediate
rewards are given by R : Sx A — R. The agent’s decisions are made based on
information from its sensors (observations) formalized by O : S x A — II(Q).

Our goal in this work is to take a POMDP and find a policy, which is a
strategy for selecting actions based on the information available to the agent,
that maximizes an infinite-horizon, discounted optimality criterion.

Figure 1 depicts a tiny navigation POMDP that we use for explanatory
purposes. It consists of 13 states (4 possible orientations in each of 3 rooms
and a goal state which is denoted by a star), 9 observations (relative location
of the surrounding walls, plus “star”), and 3 actions (forward, rotate left,
rotate right). The problem is intended to model a robot in a simple office
environment. In the figure, the robot symbol occupies the “East in Room a”
state. The agent’s task is to enter the room marked with the star, at which
point it receives a reward of +1. After receiving the reward, the agent’s next
action transports it at random into one of the 12 non-goal states. Otherwise,
transitions and observations are deterministic in this example.
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Figure 1: A tiny navigation environment.

2.2 The Belief Mdp

In the tiny navigation environment, the immediate observations do not sup-
ply enough information for the agent to disambiguate its location nor are
they sufficient for indicating the agent’s best choice of action. For example,
if the agent sees a wall behind it and to its left, it might be in “North in
Room b7 (optimal action is to turn right) or “South in Room ¢” (optimal
action is to go forward to the goal).

Some form of memory is necessary in order for our agent to choose its
actions well. Although many architectures are possible, one elegant choice
i1s to maintain a probability distribution over the states of the underlying
environment. We call these distributions belief states and use the notation
b(s) to indicate the agent’s belief that it is in state s when the current belief
state is b € I1(.S). Using the model, belief states can be updated based on the
agent’s actions and observations in a way that makes the beliefs correspond
exactly to state occupation probabilities.

From a known starting belief state, it is easy to use the transition and ob-
servation probabilities to incorporate new information into the belief state [Cassandra et al., 1994].
As an example, consider an agent that is started in any of the 12 non-goal
states of the tiny navigation environment with equal probability: b(s) = 1/12
for all non-goal states. If the agent chooses to turn right and then sees walls
in front of it and to its right, only two states are possible:

b( South in Room b ) = b( North in Room ¢ ) =1/2 .

After next moving forward and seeing walls in all directions except behind,
the agent is sure of where it is:

b( North in Room « ) = 1.

4
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Since the agent’s belief state is an accurate summary of all the rele-
vant past information, it is a sufficient statistic for choosing optimal ac-
tions [Bertsekas, 1987]. That is, an agent that can choose the optimal action
for any given belief state is acting optimally in the environment.

An important consequence is that the belief states, in combination with
the updating rule, form a completely observable Markov decision process
(MDP) with a continuous state space, similar to problems addressed in the
reinforcement-learning literature [Moore, 1994]. Our goal will be to find an
approximation of the () function over the continuous space of belief states
and to use this as a basis for action in the environment. We restrict our
attention to stationary, deterministic policies on the belief state, since this
class is relatively simple and we are assured that it includes an optimal

policy [Ross, 1983].

2.3 Piecewise-Linear Convex Functions

A particularly powerful result of Sondik’s is that the optimal value function
for any POMDP can be approximated arbitrarily well by a piecewise-linear
and convex (PWLC) function [Smallwood and Sondik, 1973, Littman, 1994].
Further, there is a class of POMDP’s that have value functions that are exactly
PWLC [Sondik, 1978]. These results apply to the optimal () functions as
well: the @ function for action a, Q4(b) is the expected reward for a policy
that starts in belief state b, takes action a, and then behaves optimally. By
choosing the action that has the largest () value for a given belief state, an
agent can behave optimally.

PwLC functions are particularly convenient because of their representa-
tional simplicity. If Q,(b) is a PWLC function, then Q,(b) can be written:

Q.(b) := maxgq - b
for some finite set of |S|-dimensional vectors, L,. That is, @, is just the
maximum of a finite set of linear functions of b.
So, although we are trying to find a solution to a continuous-space MDP,
we have constraints on the form of the optimal () functions that make this
search a great deal simpler.
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3 Some Solution Methods For POMDP’S

This section sketches several methods for finding linear or PWLC approxima-
tions to the optimal ) functions for POMDP’s. The goal in each of them is
to find ) functions that can be used to generate good behavior; that is, we
will judge the methods by the policies they produce and not by the accuracy
with which they estimate the optimal () values. None of these methods are
entirely original, but none have been used to find fast approximations to
optimal policies for POMDP’s given the POMDP models.

3.1 Truncated Exact Value Iteration

The Witness algorithm [Cassandra et al., 1994, Littman, 1994] finds exact
solutions to discounted finite-horizon POMDP’s using value iteration. Af-
ter its k-th iteration, the algorithm returns the exact k-step ) functions
as collections of vectors, L,, for each action, a. The algorithm can be
used to find arbitrarily accurate approximations to the optimal infinite-
horizon () functions and therefore policies that are arbitrarily close to opti-
mal [Williams and Baird, 1993].

Unfortunately, the algorithm can take many, many iterations to find an
approximately optimal value function, and for problems with a large number
of observations, the size of the L, sets can grow explosively from iteration
to iteration. Nonetheless, it is often the case that a near-optimal policy is
reached long before the () values have converged to their optimal values, so
truncating the value iteration process prematurely can still yield excellent
policies. We call this approach “truncated exact value iteration” and denote
1t as Trunc-VI.

3.2 The Qypp Value Method

Another natural approach to finding () functions for POMDP’s is to make use
of the ) values of the underlying MDP. That is, we can temporarily ignore
the observation model and find the Qupp(s, a) values for the MDP consisting
of the transitions and rewards only. These values can be computed extremely
efficiently for problems with dozens to thousands of states and a variety of
approaches are available [Puterman, 1994].

With the Qumpp values in hand, we can treat all the Qnpp values for each
action as a single linear function and estimate the ) value for a belief state
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bas Qu(b) = X, b(s) Qupr(s,a). This estimate amounts to assuming that
any uncertainty in the agent’s current belief state will be gone after the next
action. Thus, the action whose long-term reward from all states (weighted
by the probability of occupying the state) is largest will be the one chosen
at each step.

Policies based on this approach can be remarkably effective. One draw-
back, though, is that these policies will not take actions to gain information.
For instance, a “look around without moving” action and a “stay in place
and ignore everything” action would be indistinguishable with regard to the
performance of policies under an assumption of one-step uncertainty. This
can lead to situations in which the agent loops forever without changing
belief state.

3.3 Replicated Q-Learning

Chrisman (1992) and McCallum (1992) explored the problem of learning
a POMDP model in a reinforcement-learning setting. At the same time that
their algorithms attempt to learn the transition and observation probabilities,
they used an extension of Q-learning [Watkins, 1989] to learn approximate
() functions for the learned POMDP model. Although it was not the emphasis
of their work, their “replicated Q-learning” rule is of independent interest.

Replicated QQ-learning generalizes Q-learning to apply to vector-valued
states and uses a single vector, ¢,, to approximate the ) function for each
action a: Qq(b) = ¢, -b. For many POMDP’s, a single vector per action is not
sufficient for representing the optimal policy. Nonetheless, this approxima-
tion is simple and can be remarkably effective.

The components of the vectors are updated using

Aga(s) = a b(s)(r + v max Qu (V) — ga(s)) -

The update rule is evaluated for every s € S each time the agent makes a
state transition; « is a learning rate, b a belief state, a the action taken,
r the reward received, and b’ the resulting belief state. This rule applies
the Q-learning update rule to each component of g, in proportion to the
probability that the agent is currently occupying the state associated with
that component.

By simulating a series of transitions from belief state to belief state and
applying the update rule at each step, this learning rule can be used to solve
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a POMDP. If the observations of the POMDP are sufficient to ensure that the
agent is always certain of its state (i.e., b(s) = 1 for some s at all times), this
rule reduces exactly to standard Q-learning and can be shown to converge to
the optimal ) function under the proper conditions [Jaakkola et al., 1994,
Tsitsikilis, 1994].

The rule itself is an extremely natural extension of Q-learning to vector-
valued state spaces, since it basically consists of applying the Q-learning
rule at every state where the magnitude of the change of a state’s value 1s
proportional to the probability the agent is in that state. In fact, in addition
to its use by Chrisman and McCallum, an elaboration of this rule is used
by Connell and Mahadevan (1993) for solving a distributed-representation
reinforcement-learning problem.

Although replicated QQ-learning is a generalization of ()-learning, it does
not extend correctly to cases in which the agent is faced with significant
uncertainty. Consider a POMDP in which the optimal @ function can be
represented with a single linear function. Since replicated Q-learning in-
dependently adjusts each component to predict the moment-to-moment ()
values, the learning rule will tend to move all the components of ¢, toward
the same value.

3.4 Linear Q-Learning

Linear Q-learning is extremely similar to replicated Q-learning but instead
of training each component of ¢, toward the same value, the components of
ga are adjusted to match the coefficients of the linear function that predicts
the @) values. This is accomplished by applying the delta rule for neural net-
works [Rumelhart et al., 1986], which, adapted to the belief MDP framework,
becomes:

Ada(s) = a b(s)(r +ymaxQu (V) = ga - b) -

Like the replicated Q-learning rule, this rule reduces to ordinary Q-learning
when the belief state is deterministic.

In neural network terminology, linear Q-learning views {b, r+~ maxq Qq/(b')}
as a training instance for the function Q,(-). Replicated Q-learning, in con-
trast, uses this example as a training instance for the component ¢,(s) for
every s. We should expect the rules to behave differently when the com-
ponents of g, need to have widely different values to solve the problem at

hand.
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Name S| |4 |9] Noise
Shuttle [Chrisman, 1992] g8 3 5 T/O
Cheese Maze [McCallum, 1992] 11 4 7 -
Part Painting [Kushmerick et al., 1993] | 4 4 2 T/O
4x4 Grid [Cassandra et al., 1994] 16 4 2 -
Tiger [Cassandra et al., 1994] 2 3 2 O
4x3 Grid [Parr and Russell, 1995] 11 4 6 T

Table 1: A suite of extremely small POMDP’s.

Like replicated Q-learning, linear )-learning has the limitation that only
linear approximations to the optimal () functions are considered. In general,
this can lead to policies that are arbitrarily poor, although this does not
appear to be true for the extremely small POMDP’s we studied.

Note that, since the transition probabilities and rewards are known, it is
possible to perform full backups instead of the sampled backups used in tra-
ditional Q-learning. The relationship between these two methods is discussed
in a later section of the paper.

3.5 Empirical Comparison On Extremely Small Prob-
lems

We ran each of the above methods on a battery of POMDP’s selected from
the literature, summarized in Table 1. Detailed descriptions of all of these
problems are given in the appendix.

Interestingly, all 6 POMDP’s have the property that optimal policies pe-
riodically reset to a problem-specific belief state. We used a discount factor
of 0.95 for all problems. The column of Table 1 labeled “Noise” indicates
whether there is noise in the transitions, observations, or both.

For the experiments on truncated exact value iteration, we ran the exact
algorithm for approximately 100 seconds and used the output of the last
complete iteration as a solution.

The learning approaches have a large number of free parameters which
we did not optimize carefully for either speed or performance. For each of 21
runs, we performed 75,000 steps of learning starting from the problem-specific
belief state which is shown in the appendix. During learning, actions were
selected to maximize the current ) functions with a 0.1 probability of being
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Shuttle Cheese Maze Part Painting 4x4 Grid Tiger

4x3 Grid

Trunc VI
Qmpp
Repl Q
Linear Q

optimal

1.805 +£0.014 0.188 £0.002 0.179 £0.012 0.193 £0.003 0.930 £ 0.205
1.809 £0.012 0.185£0.002 0.112£0.016 0.192 £0.003 1.106 £ 0.196
1.355 £0.265 0.175 £0.017 0.003 £0.005 0.179 £0.013 1.068 £+ 0.047
1.672 +£0.121 0.186 £0.000 0.132 £0.030 0.141 £0.026 1.074 4+ 0.046

0.186 +0.002 0.170 £0.012 0.192 £0.002 1.041 £ 0.180

Table 2: Results of POMDP solution methods on the suite of extremely small
problems.

overridden by a uniform random action. The learning rate was decreased
according to the following schedule: 0.1 for steps 0 to 20,000, 0.01 from
20,000 to 40,000, 0.001 from 40,000 to 60,000, and then 0.0001 thereafter.
The ¢,(s) component values were initialized to random numbers uniformly
chosen between —20.0 and +20.0. The parameter values were chosen by
informally monitoring the performance of linear (Q-learning on several of the
problems.

Each method returned a set of vectors that constitute linear or PWLC ap-
proximations of the () functions. An agent that chooses actions to maximize
the ) functions was then simulated to evaluate the quality of the induced
policy. Each simulation started with the agent in the problem-specific belief
state and ran for 101 steps. This procedure was repeated 101 times and the
performance is reported as the mean reward received with a 95% confidence
interval.

Table 2 reports the results. The data for the two learning algorithms are
pooled over 21 independent experiments. For four of the problems, we were
able to compute the optimal ) functions using the Witness algorithm in 25
to 120 minutes. We then simulated the optimal vectors to obtain the row
marked “optimal” in the table. The two other problems possibly do not have
PWLC optimal ) functions.

The most overwhelming result is that almost every method on almost ev-
ery problem achieves practically optimal performance. Truncated exact value
iteration is always statistically indistinguishable from optimal and tends to
do no worse than the Qypp value method. The Qnpp value method tends
to do no worse than linear Q-learning which tends to do no worse than repli-
cated Q-learning. The Qypp value method, which consistently performed
quite well, was the most time-efficient algorithm, requiring not much more
than half a second on any problem. The learning algorithms, by contrast,

10

0.109 £ 0.005
0.112 £ 0.005
0.080 £ 0.014
0.095 £ 0.007
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Name Repl-QQ Lin-QQ @Qmpp Optimal
Shuttle 30 30 0.10 —
Cheese Maze 46 46 0.21 1500
Part Painting 18 18 0.10 7000
4x4 Grid 75 75 0.54 7000
Tiger 12 12 0.06 7000
4x3 Grid 44 44 0.25 —

Table 3: Approximate running times for extremely small POMDP’s (in sec-

onds).

took between 16 seconds and 80 seconds, depending mostly on the size of
the problem. The truncated exact value iteration algorithm always took 100
seconds, by design. Table 3 summarizes the approximate running times for
the various algorithms.

There are two significant exceptions to the overall performance trend
shown in Table 2: the Qypp value method was worse than linear )-learning
on the part-painting problem and linear ()-learning was worse than repli-
cated Q-learning on the 4x4 problem. The former is a result of the Qypp
value method not choosing actions to gain information, which are necessary
for optimal behavior in this problem. The latter occurs because of the deter-
minism in the state transitions and the relatively small probability of taking
random exploratory actions; this problem can be easily fixed by adjusting the
probability of taking a random action. This combination of determinism and
lack of exploration can cause the goal to be infrequently visited during learn-
ing in cases where the random initial policy leads to cyclic behavior. This
was verified by stepping through the learning algorithm in those sub-optimal
cases and observing the cyclic behavior.

To provide further evidence that cyclic behavior was causing the poor
results, we ran the entire set of experiments a second time with an increased
rate of exploration. In the results shown in Table 4 came from experiments
that were identical in all parameters except the exploration probability. In
these experiments there was a 0.25 probability that a random action would
be chosen.

11
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Shuttle Cheese Maze Part Painting 4x4 Grid Tiger 4x3 Grid
Trunc VI | 1.805 £0.014 0.188 £0.002 0.179 £0.012 0.193 +0.003 0.930 £ 0.205 0.109 £ 0.005
Qvpp 1.809 £0.012 0.185+£0.002 0.112£0.016 0.1924+0.003 1.106 £0.196 0.112 £ 0.005
Repl Q X+X X+X X+ X X+X X+X X+X
Linear Q X+X X+X X+ X X+X X+X X+X
optimal — 0.186 £0.002 0.170 £0.012 0.192 +0.002 1.041 £ 0.180

Table 4: Results of POMDP solution methods using higher exploration prob-
ability.

1 2 3 ﬁ

Figure 2: Navigation environment with 57 states.

4 Handling Larger POMDP’S: A Hybrid Ap-
proach

It is worth asking whether the results of the previous section apply to larger
or more complicated domains. We constructed two POMDP’s designed to
model a robot navigation domain, shown in Figures 2 and 3.

One environment has 57 states (14 rooms with 4 orientations each, plus
a goal) and 21 observations (each possible combination of the presence of
a wall in each of the 4 relative directions, plus “star” and three landmarks
visible when the agent faces south in three particular locations). The other
has 89 states (4 orientations in 22 rooms, plus a goal) and 17 observations
(all combinations of walls, plus “star”). Both include 5 actions (stay in
place, move forward, turn right, turn left, turn around) and have extremely
noisy transitions and observations. The appendix gives the full details of
the dynamics of these environments, including transition and observation
probabilities.

We ran the same collection of algorithms on these two environments with
a slight change: truncated exact value iteration was given roughly 1000 sec-
onds. This increase in time compensates for the longer running times re-
quired by the learning algorithms on these environments. Performance was
measured slightly differently. The policies were evaluated for 251 trials, each
consisting of a run from the problem-specific initial belief state to the goal.

12
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2

Figure 3: Navigation environment with 89 states.

57 states 89 states
goal% median goal% median
Trunc VI 62.9 150 446 > 251
Qvpp 474  >251 259 > 251
Repl Q 5.2 > 251 2.8 > 251
Linear Q 8.4 > 251 5.2 > 251

Table 5: Results of POMDP solution methods on the two navigation environ-
ments.

For these two environments the initial belief state was a uniform distribution
over all states except the goal state. If the agent was unable to reach the
goal in 251 steps, the trial was terminated.

Table 5 reports the percentage of the 251 runs in which the agent reached
the goal and the median number of steps to goal over all 251 runs. For the
learning algorithms, performance was measured as a median of 21 indepen-
dent runs.

This time, none of the approaches gave even passable results, with many
test runs never reaching the goal after hundreds of steps. Truncated exact
value iteration was able to complete two iterations in about 4 seconds and
made no additional progress for up to 1500 seconds. The Qy\pp value method
is deterministic, so the reported results are based on the best policy it can
achieve. The learning approaches have the capability of adapting and im-
proving but are unable to reach the goal state often enough to learn anything
at all. Thus, all 4 methods fail, but for different reasons.

This suggests the possibility of a hybrid solution. By computing the
Qnvpp values and using them to seed the ¢, vectors for learning, we can take

13
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57 states 89 states
goal% median goal% median

Repl Q 72.9 21 10.8 > 251
Linear Q 96.0 15 58.6 51
Human 100.0 15 100.0 29
Qwmpp-no stay | 100.0 16 57.8 40

Random Walk 46.2 > 251 25.9 > 251

Table 6: Results of POMDP solution methods when seeded with the Qupp
values on two navigation environments.

advantage of the strengths of both approaches. In particular, the hope is
that the Qumpp values can be computed quickly and then improved by the
learning algorithms.

Table 6 summarizes the results of initializing the two learning algorithms
using the Qypp values in place of random vectors. Training and testing
procedures followed those of the other navigation experiments.

In both environments, the linear Q-learning algorithm was able to use the
initial seed values to find a better policy (almost doubling the completion
percentage and halving the steps to the goal). The replicated Q-learning
algorithm, on the other hand, actually made the performance of the Qypp
value method worse.

The performance of the hybrid algorithm appears quite good. However,
the complexity of the navigation environments makes direct comparison with
an optimal policy out of the question. To get a qualitative sense of the diffi-
culty, we created an interactive simulator for the two navigation environments
which included a graphical belief state display. A single human subject (one
of the authors) practiced using the simulator and then carried out testing
trials with the results reported in Table 6. In the smaller environment, the
testing period lasted for 45 trials and the longest run was 57 steps. The
median performance of 15 steps per trial is exactly the same as that of the
hybrid algorithm. In the larger environment, the testing period lasted for
31 trials and the longest run was 73 steps indicating substantial room for
improvement in the existing algorithms.

After further study, we discovered that the primary reason for the poor
performance of the straight Qypp value method is that the agent chooses the
“stay in place” action in some belief states and sometimes becomes trapped
in a cycle. As a test of this hypothesis, we removed this action from the

14
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57 states 89 states
goal% median goal% median

Linear Q ‘ 99.2 14 83.7 33

Table 7: Experiments using 500,000 learning steps.

set of actions that can be chosen by the Qunpp value method and reran
the evaluation with results given in Table 6. Surprisingly, decreasing the
set of options helped the Qnpp value method reach a level of performance
comparable to that of linear Q-learning. Thus, the learning algorithm applied
to the navigation environments may be retaining the important parts of the
Qnvpp policy while simply learning to suppress the “stay in place” action—a
reasonable approach to attaining good performance on these POMDP’s. For
comparison purposes, we have included the performance of a random walk
policy where actions (except “stay in place”) are chosen randomly.

The results in Table 6 were for our initial experiments using 75, 000 learing
steps. The nature of the algorithm is such that it can improve over time, so
the natural question is what happens when we run the algorithm for longer
periods. We wouldn’t expect the 57 state problem results to improve much,
but there is considerable room for improvement on the 89 state example.

Table 7 shows the results of running the Linear-Q) learning algorithm for
500,000 steps. The learning rate was the same as the original experiments,
though the exploration probability was 0.2 for these experiments. These were
only based upon 11 independent experiments and used the Qvpp values as
initial values.

Table 7 shows that allowing more learning steps leads to better perfor-
mance, most importantly, it shows that learning algorithms can do better
than a policy which just suppresses the “stay-in-place” action. Some pre-
liminary experiments have shown that even better performance could be
achieved with a better learning rate adjustment schedule.

Seeding linear Q-learning using the Qupp values leads to a promising
method of solving larger POMDP’s than have been addressed to date. Below,
we discuss some experiments that explore why this hybrid approach does so
well.

15
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4.1 Discussion of Biasing Initial Values

Although the use of the Qupp values helps the learning algorithms signif-
icantly, we would like to understand exactly what aspect of this bias con-
tibutes to the improvement. There are three possible explanations: the Qumpp
values specify a policy that gets the agent to the goal more often allowing
faster learning; the Qumpp values are merely in the proper neighborhood of
some good final values; or it could be some complicated interaction of both
of these.

Getting to the goal more frequently is an important factor in the rate at
which it can learn in these environments, since the only reward received is
at the goal. If the starting values are a significant distance from the good
values, there might not be enough experiences or the learning rate might
not be sufficient enough to bring these values into the correct range. This
illustrates the complicated interaction between the initial policy, the initial
values, the learning rate and the exploration rate. Thus, it is not immediately
clear which factors are most significant, nor is it clear exactly how these
interact with one another.

To explore this issue, we made a significant change the the experimental
setup. We would now keep two sets of vectors as the simulations progressed.
The first set would be the Qnpp values, which we would use to determine the
actions to take. The second set were randomly initialized, as in the first set
of experiments, and would be the values that were actually updated. Thus,
we separated the policy from the values being updated.

This setup was not the ideal, since our policy is not able to improve over
time as it could in the learning experiments. If the values being updated
were to ever specify a policy that was better than the policy specified by the
Qmpp, then continuing with the latter policy would be handicapping this set
of experiments. However, running these experiments showed that the learned
policy never approached the quality of the policy for the original Qnpp values
as shown in Table 8. For this experiment we ran only 11 independent trials
on the 57 state example and used a learning rate of 0.1 for the first 50,000
steps and 0.01 for the remaining 25,000 steps. Since the learning rate is
different from the previously presented results, we also show the results for
using the random values only at this new learning rate in the table and no
significant improvement results. For the separation of policy and values, the
random values were within the range —20 to +20.

As can be seen in Table 8, the policy specified by the Qnpp are not solely
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57 states
goal% median

Qmpp 474 > 251
Linear () (Random values/policy —20 to 420) 15.5 > 251
Linear Q (Qumpp policy and random values) 1.6 > 2531

Table 8: Result of separating the policy from the updated values.

responsible for the the good results of the hybrid algorithm. To understand
what role the initial values played in the hybrid algorithm, we used random
initial values and policy as before, except this time we restricted the range of
starting random values to be within the range of the Qnpp values, +1.0 to
+2.5. Using the same experimental setup we ran 8 independent experiments
and found the performance to be as good as when we seeded it with the
Qwupp values: the goal was reached 99% of the time and there was a median
of 14.5 steps to the goal. This data shows that the actual Qumpp policy is of
little or no help in the hybrid algorithm, and that the initial range of values
is what is most important.

This result does not negate the usefulness of the hybrid algorithm, since
the Qumpp present a disciplined technique for finding a good range of values
for initialization. However, an open question is whether the actual values are
important or is it merely the relative values of the vectors. If the values all
start in the same small range, then the small changes made to the values in
the learning algorithm, can modify the policy significantly. It could be that
any small random initial interval of values would work as well as the +1.0 to
+2.5 range has. We have not yet explored this issue.

The importance of the the initial values is directly tied to the learning
rate. In the original experiments (—20 to 4+20) the learning rate is not large
enough to quickly bring some of the extreme values to within the useful
range. Since the learning rate decays, initial values at the extreme points of
the initial starting range might not have progressed much in the direction
that the gradient is trying to push them. Thus, it would seem that a more
liberal learning rate could potentially lead to good performance even when
the initial values are far from decent final values.

In our attempt to explore this issue, we ran experiments with different
learning rates with the goal of trying to get the learning algorithm to produce
good results when the initial values where in the range —20 to +20. At our
original learning rate schedule, this range of initial values produced very poor
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results.

This set of experiments proved quite difficult, since even when we are
only considering the learning rate, the parameter space is quite large. Recall
that the learning rate is decayed in a step-wise manner. This results in the
need to set the learning rate for each step and to define the intervals that
each step will be in effect. The interaction between these two aspects is quite
important and many different settings were tried.

Table 9 shows the performance of many settings for the learning rate
schedule on the 57 state problem for 11 independent trials each. As can be
seen, most of the settings did not give significantly good results. However,
the last one is remarkably good compared to the original results and not that
much worse than the hybrid algorithm’s results. We stopped our parameter
exploration with this example, since it seemed to demonstrate the point that
was hypothesized.

The conclusion to draw from all of this experimental exploration is that
the basic Linear-Q) learning algorithm can solve modest sized POMDP prob-
lems, but that it could require a significant amount of parameter tweaking.
Getting the initial values in a good range to start with makes the algorithm
less sensitive to the parameter settings and the Qnpp values provide a disci-
plined way to set these initial values.

5 More Advanced Representations

None of the algorithms reach the goal in the 89-state problem all the time:
clearly optimal performance has not yet been reached. As discussed in Sec-
tion 2.3, piecewise-linear convex functions can approximate the optimal ()
functions as closely as necessary. In contrast, the linear approximations to
the Q-functions used by the learning algorithms can result in arbitrarily bad
approximations.

5.1 The Need for a More Advanced Representation

To drive this point home, we designed a navigation problem (see Figure 4)
for which any linear approximation to the ) functions is guaranteed to be
suboptimal. The parameters of the environment follow those of the naviga-
tion environments discussed previously. There are two significant differences:
two rooms marked with minus signs in the figure are associated with negative
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learn 57 states
rate  Interval goal% median
0.1 [0-50,000) 5.5 > 251
0.01  [50,000-75,000)

1.0 [0-10,000) 23.9 > 251
0.1 [10,000-25,000)

0.01  [25,000-50,000)

0.001 [50,000-75,000]

10.0  [0-1,000) 4.0 > 251
1.0 [1,000-25,000)

0.1 [25,000-50,000)

0.01  [50,000-75,000)

2.0 [0-1,000) 6.8 > 251
1.0 [1,000-11,000)

0.1 [11,000-31,000)

0.01  [31,000-75,000)

0.5 [0-2,500) 8.8 > 251
0.1 [2,500-15,000)

0.05  [15,000-35,000)

0.01  [35,000-75,000)

0.5 [0-5,000) 13.5 > 251
0.1 [5,000-25,000)

0.05  [25,000-40,000)

0.001  [40,000-75,000)

0.5 [0-25,000) 83.7 22.0
0.1 [25,000-45,000)

0.05  [45,000-55,000)

0.001  [55,000-75,000)

Table 9: Results for Linear-Q algorithm with various learning rate schedules.
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O O

Figure 4: A 33-state navigation environment that cannot be solved with a

single linear function per action.

reward, and the agent starts with equal probability facing North in one or
the other of the two rooms marked with agent symbols in the figure.

An agent starting in the left start state should move forward, turn right,
and move forward again. From the right start state, the agent should move
forward, turn left and move forward again. The difficulty is that the two
scenarios are distinguished only by the configuration of walls in the initial
state, which can only be perceived if the agents chooses to stay in place for
a step so that it may receive an observation for the initial state. Because
actions precede observations, staying in place is an action to gain information
in this problem.

The fact that the agent needs to take an action to gain information and
then execute the same action (forward) regardless of the outcome, is sufficient
to destroy any single-vector-per-action approximation of the optimal policy.

Although we understand the nature of this particular problem, a very
interesting (and open) problem is how to determine the number of vectors
needed to represent the optimal policy for any given POMDP.

5.2 A PWLC Q-Learning Algorithm

A simple approach to learning a PWLC ) function is to maintain a set of
vectors for each action and use a competitive updating rule: when a new
training instance (i.e., belief state/value pair) arrives, the vector with the
largest dot product is selected for updating. The actual update follows the
linear Q-learning rule. It is possible that the different vectors will come to
cover different parts of the state space and thereby represent a more complex
function than is possible with a single vector.

To show the potential gain of utilizing multiple vectors per action, we ran
experiments on the 33-state navigation environment. We ran 21 indepen-
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33 states
goal% median

trunc VI 39.8 > 251
Qvpp 179 > 251
Linear Q 46.6 > 231
3-PWLC Q 98.4 5

(mpp-no stay 14.3 > 251

Table 10: Results of POMDP solution methods on the specially-constructed
33-state navigation environment.

dent trials of 75,000 learning steps of linear -learning as well as truncated
exact value iteration and the Qupp value method. We compared these to
the 3-PWLC Q-learning algorithm, which uses the competitive approach de-
scribed above with 3 vectors per action. In analogy to the hybrid algorithm
of the previous section, we initialize all 3 vectors for each action with the
appropriate Qnpp values.

The evaluation criterion was the same as for the 57 and 89-state navi-
gation environment experiments. Table 10 shows the results and, as antici-
pated, the single vector methods perform poorly.

Although the 3-PWLC algorithm performs astonishingly well on this prob-
lem, its performance on other problems has been inconsistent. The primary
difficulty is that noisy updates can cause a vector to “sink” below the other
vectors. Since this approach only updates vectors when they are the largest
for some belief state, these sunken vectors can never be recovered. A related
problem plagues almost all competitive learning methods and in our informal
experiments, we found this to occur quite often. We have considered some
extensions to address this problem, but we have not yet found a reliable
solution.

A classic approach to the sunken-vector problem is to avoid hard “winner-
take-all” updates. Parr and Russell (1995) use a differentiable approxima-
tion of the max operator and find they can produce good policies for the
4x4 and 4x3 grid problems. The approach is promising enough to warrant
further study including comparisons on the difficult navigation environments
described in this paper.
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6 Miscellaneous Issues

6.1 Sample vs. Full Backups

In the method proposed here, we use a model to generate the experiences
that are used to update the values. Since we have the model, it is possible
to perform full backups instead of the sample backups used in traditional
QQ-learning. The sample backup technique updates values based upon a sin-
gle piece of experience, more specifically, based upon a single resulting state.
However, when the model is known, we have access to all the possible out-
comes (resulting states) and the probability of each of these occuring. With
this information we can simulate many resulting states instead of just the
actual resulting state.

For a POMDP the full backup is computed using all the posible resulting
belief states, of which there are as many of these as number of observations.
Thus the full backup version of the two learning algorithm update rules
become:

Aga(s) = ab(s)(r+~ Z P{v'} max Q“/(b’) —qa(s)) Repl-Q,

b/

Aga(s) = ab(s)(r +~ Y P} max Q¥ (V) — gu-b) Lin-Q.
- a

In these equations the sum over the resulting belief states, V', is a notaional
simplification, since each resulting belief state is computed for each observa-
tion from the current belief state, b, and the current action. The probability
of each resulting belief state is computed with the same machinery used to
update the belief state. See [Cassandra et al., 1994] for details on updating
belief states.

Although the full backup idea seems well motivated, there are some strong
reasons why they were not utilized. In practice, using full backups greatly
increases the running time. The increase is directly correlated with the num-
ber of observations in the problem. The full backup rule requires us to sum
over all observations, making each full backup much more expensive than a
sample backup. Table 11 show the timing comparisons for the sample and
full backups on each of the examples shown in this paper. Notice the effect
of the number of observations on the running times.

Although the increase in timing is dramatic, it isn’t reason enough to rule
it out as a viable method for solving these problems. In our experiments,
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Name Sample  Full | |Q]
Shuttle 30 115 3
Cheese Maze 46 250 7
Part Painting 18 28 2
4x4 Grid 75 270 2
Tiger 12 21 2
4x3 Grid 44 270 6
57 State 820 25500 | 21
89 State 1910 53300 | 17
33 State 280 6750 | 17

Table 11: Timing comparisons for full and sample backups (seconds).

though, we could discern no increase in performance for the full backup
techniques using our initial experimental set-up.

Simply runnning the experiments for the same number of steps would
not be sufficient to claim that full backups were no better than sample back-
ups, since the full backups may improve the policy faster than the sample
backup techniques. We explored the rate of improvement using the small
problems to gauge whether or not full backups could get good policies faster
than sample backups. Figures 5 through 16 shows the performance profiles
for each of the small problems using two ranges for each problem. The x-
axis 1s the number of learning updates, while the y-axis is the average reward
received. These profiles were generated by periodically interrupting the learn-
ing algorithm and performing the evaluation simulation. Although there are
instances where full backups seem better, there are also some where they
were no better or even worse. The minor gains shown by this data, did not
seem to justify the significant amount of extra computational time required
to perform the full backups. This is not conclusive though, since these spe-
cific problems are not necessarily representative of the interesting problems
that would actually need to be solved.

One final reason why we chose not to explore full backups further, is that
it seems to contradict one of the motivations for using simulations to learn
the values. We argue that the space to be explored is huge, and that using
simulations will focus the search on the interesting parts of the belief space.
With the introduction of full backups, we will be considering belief states
we have not yet visited, since we will need to sum over all possible next
belief states. This could include many belief states that are unlikely; i.e., the
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Figure 5: Performance profile of tiger problem for 2,500 steps.

0 5000 10000 15000 20000 25000

Figure 6: Performance profile of tiger problem for 25,000 steps.
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Figure 7: Performance profile of shuttle problem for 2,500 steps.
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Figure 8: Performance profile of shuttle problem for 25,000 steps.
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Figure 9: Performance profile of part painting problem for 2,500 steps.
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Figure 10: Performance profile of part painting problem for 25,000 steps.
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Figure 11: Performance profile of 4x4 grid problem for 2,500 steps.
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Figure 13: Performance profile of 4x3 grid problem for 2,500 steps.
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Figure 14: Performance profile of 4x3 grid problem for 25,000 steps.
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Figure 15: Performance profile of cheese maze problem for 2,500 steps.
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Figure 16: Performance profile of cheese maze problem for 25,000 steps.
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observation that leads to that belief state has low probability. The inclusion
of unlikely belief states defeats one of the motivating points in favor of using
simulations.

However, a comprise approach could prove fruitful. If we do a partial
backup, considering only the most likely next belief states, we might be
able to keep the run times reasonable, while increasing the rate that good
values are obtained. We have not explored this option, since it would require
a different organization of the code to be able to efficiently find the best
observations, given a particular belief state.

7 Conclusions

We can now obtain high quality policies for a class of POMDP’s with nearly
100 states. We predict that these techniques can be honed to produce good
policies for a wide variety of problems consisting of hundreds of states. But
to handle the thousands of states needed to address realistic problems, other
techniques will be needed.

Other approaches to scaling up, including various kinds of factoring and
decomposition of the transitions and belief states (e.g., the sort of approach
Boutilier et al. (1995) and Nicholson and Kaelbling (1994) used in fully ob-
servable domains), may be able to be used in concert with techniques de-
scribed 1n this paper to yield practical results in moderately large POMDP
problems.

A Detailed Problem Descriptions

For each of the POMDP problems presented in this report, we give a short de-
scription, its source and then a detailed description of the problem including
the specific probabilities and rewards. For the extremely small problems we
include the actual files used in the experiments so that we can provide as pre-
cise information as possible. Unfortunately, the format of these files requires
explanation, so we must first provide the description of this file format.

For all problems, we used a discount factor of 0.95 and state-action pair
values were considered to be rewards, so that higher values are more desirable.
Each of the problems has a notion of a goal to be reached. When this goal
is reached, the problem is restarted using a problem specific belief state as
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the initial belief state. These reset belief states are given below for each of
the problems.

A.1 File Format Description

Since we present the actual data files used for most of the experiments, we
need to describe the format that was used for these files. We begin the
desscription of the file format with some notational conventions:

e %f - a floating point number

e %d - and integer

Comma separated items within brackets, e.g., [ a, b, ¢ | represent a choice
of one of these items. Everything from a '#’ symbol to the end-of-line is
treated as a comment. They can appear anywhere in the file. Throughout
all definitions, whitespace (space, tab, newline) serves as a delimiter, with
any amount of consecutive whitespace acting as a single delimiter.

The following 5 lines must appear at the beginning of the file. They may
appear in any order as long as they preceed all specifications of transition
probabilities, observation probabilities and rewards.

discount: %f

values: [ reward, cost ]

states: [ %d, list of states ]

actions: [ %d, list-of-actions ]
observations: [ %d, list-of-observations ]

The definition of states, actions and/or observations can be either a num-
ber indicating how many there are or it can be a list of strings, one for each

entry. These mnemonics cannot begin with a digit. For instance, both:

actions: 4
actions: north south east west

will result in 4 actions being defined. The only difference is that in the
latter the actions can then be referenced by the mnemonic name. Even when
mnemonic names are used, later references can use a number as well, though
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it must correspond to the positional number in this list where the numbering
starts with 0. The numbers are assigned consecutively from left to right in
the listing starting with zero (e.g., the action ’south’ is action number 1 in
the example above).

When listing states, actions or observations one or more whitespace char-
acters are the delimiters (space, tab or newline). When a number is given
instead of an enumeration, the individual elements will be referred to by
consecutive integers starting at 0.

After this preamble, there is the option of specifying a problem specific
starting state, or starting state distribution. If this starting state specification
does not appear, then the starting belief state will be a uniform distribution
over all possible states. To specify a starting state there are three formats
that can be used:

start: Uf Uf ... Uf
start include: 1list-of-states
start exclude: 1list-of-states

The first form allows an explicit initial belief state definition, where the
probability for each state is given. Since this can be cumbersome for large
state spaces, the latter two provide more convenient specifications. The
“start include” line allows you to specify a uniform distribution over only a
subset of the states. The states can either be listed by number or mnemonic.
The inclusion of a single state will result in certainty in the starting state.
The “start exclude” mnemonic is similar, except it will define a uniform
distribution over all the states that are not included in the state list that
follows it.

After the initial five lines and optional start state, the speciifications of
probabilities and rewards appears. These specifications may appear in any
order, and can even be interleaved. Any probabilities or rewards not specified
in the file are assumed to be zero.

You may also specify a particular probability or reward more than once.
The definition that appears last in the file is the one that will take affect,
overriding any previous declarations. This is convenient for specifying excep-
tions to general specifications.

To specify an individual state transition probability:

T: action : start-state : end-state : Uf
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Anywhere an action, state or observation can appear, you can also put the
wildcard character ’>*’ which means that this is true for all possible entries
that could appear here. For example:

T: 5: = : 01.0

is interpreted as action 5 always moving the system state to state 0, no
matter what the starting state was (i.e., for all possible starting states.)
To specify a particular row of a transition matrix:

T: action : start-state
Yf %f ... YT

Where there is an enter for each possible next state. This allows defining
the specific transition probabilities for a particular starting state only. In-
stead of listing the numbers the mnemonic word uniform may appear. In
this case, each transition for each next state will be assigned the probability
%, with N being the number of states. Again, an asterick in either the action
or start-state position will indicate all possible entries that could appear in
that position.

To specify an entire transition matrix for a particular action:

T: action

e Ur ... YE
TR
e e L. s

Where each row corresponds to one of the start states and each column
specifies one of the ending states. Each entry must be separated from the
next with one or more white-space characters. The new-lines are just for
formatting convenience and do not affect the final matrix results. The only
restriction is there must be NxN values specified where "N’ is the number of
states.

In addition, there are a few mnemonic conventions that can be used in
place of the explicit matrix above:

identity
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uniform

Note that uniform means that each row of the transition matrix will
be set to a uniform distribution. The identity mmnemonic will result in a
transition matrix that leaves the underlying state unchanged for all possible
starting states.

To specify individual observation probabilities:

0 : action : end-state : observation %f

The asterick wildcard is allowed in any of the positions.
To specify a row of a particular actions’ observation probability matrix:

0 : action : start-state
Yf %f ... YT

This specifies a probability of observing each possible observation for a
particular action and ending state. The mnemonic short-cut uniform may
also appear in this place.

To specify an entire observation probability matrix for an action:

0: action

e e ... YE
e e . e
e e L. s

The format is similiar to the transition matrices except the number of
entries must be NxO where N’ is the number of states and 'O’ is the number
of observations. Here too the uniform mnemonic can be substituted for an
enire matrix. In this case it will assign each entry of each row the probability
%, where Z is the number of possible observations.

To specify individual rewards:

R: action : start-state : end-state : observation %f

For any of the entries, an asterick for either state, action, observation
indicates a wildcard that will be expanded to all existing entities.
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There are two other forms to specify rewards:

R: action : start-state : end-state
%t ... Ut

This specifies a particular row of a reward matrix for a particular action
and start state. The last reward specification form is

R: action : start-state
%t ... Ut
%t ... Ut
wE e ... Ut

which lets you specify an entire reward matrix for a particular action and
start-state combination.

A.2 Shuttle

This problem is nearly identical to the one presented in [Chrisman, 1992],
since it was obtained directly from a section of Lonnie Chrisman’s code,
whom was very gracious in sending it to us. It models a simple space shut-
tle docking problem, where we must dock by backing up into one of two
space stations. The goal is to alternate between the two stations, delivering
supplies. Alternatively, the goal can be view as trying to go to the station
which we have least recently visited. There are penalties for bumping into
the space station (trying to go forward while facing directly in front of it)
and rewards for getting to the proper station (backing up into the station,
which simulates docking). There is no reward or penalty for docking with
the most recently visited station, it just does not receive the reward it would
have if it docked with the proper, least recently visited station.

Figure 17 shows this problem pictorially. There are three actions that
can be chosen: go-forward, turn-around and backup. There are eight states
as depicted by the eight shuttles in Figure 17. The left-most and right-most
show the shuttle states when it is docked in one of the two space stations.
The most recently visited and least recently visited station are labelled with
MRYV and LRV respectively. It is an odd property of this problem that once
the shuttle is docked in the LRV station, its next action actually appears
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Figure 17: Chrisman’s space shuttle docking problem.

to take effect from the MRV station. This results because the least recently
visited station becomes the most recently visited station the instant you visit
it; 1.e., the LRV and MRV stations are effectively swapped. Thus, the backup
action when in the LRV station transitions to the docked in MRV station
state.

The penalty for bumping into the space station is —3; this occurs when
the shuttle is adjacent and facing a station and chooses the go-forward action.
The reward for correctly docking with the least recently visited station is +10;
this occurs when the backup action is chosen when the suttle is adjacent, but
facing away from a station.

Both the go-forward and turn-around actions are deterministic, but there
is noise in the backup action. If the shuttle is adjacent and facing a space
station, then the backup action: has only a 0.3 probability of succeeding; a
0.4 probability of having no effect; and has a 0.3 probability of acting like
the turn-around action. If the shuttle is in a station, then the backup action
will deterministically leave the shuttle in the MRV station. When the shuttle
is in one of the two states out in space (shown shaded in Figure 17), then
backup succeeds with probability 0.8, has no effect with probability 0.1 and
with probability 0.1 has the same effect as a backup and turn-around action
combination. Finally, when the shuttle is adjacent and facing away from the
station, it has a 0.7 probability of actually docking with the space station
and 0.3 probability of resulting in no change of state.

There are five observation for this problem which correspond to what we
might see out the front window of the shuttle. We can either see one of the
two space station in front of us, or we can see that we are docked in one of
the two space stations, or we might not be able to see anything.

The observations correponding to being docked are always seen with prob-
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ability 1.0 when the shuttle actually is docked. When the shuttle is adjacent
and facing a station, it deterministically observes that station. If it is adja-
cent, but facing away from the station, it will deterministically see nothing.

Therefore, the only interesting observation is what is observed from the space
positions. When in the space states, there is a 0.7 probability that we will
be able to see the station in front of us and a 0.3 probability that we see
nothing. Here is the complete file specification.

H H#H R

®H # B

discount: 0.95
values: reward

states: 8

# 0 Docked in LRV

# 1 Just outside space
# facing station

# 2 Space facing MRV

# 3 Just outside space
# facing station

# 4 Just outside space
# facing station

# 5 Space, facing LRV
# 6 Just outside space
# facing station

# 7 Docked in MRV

This is an example that appears in Lonnie Chrisman’s
paper "Reinforcement Learning with Perceptual Aliasing:
The Perceptual Distinctions Approach'", AAAI-92 The actual
values were sent to Michael Littman from Lonnie via email
and taken directly from Lonnie’s code.

LRV - least recently visited, MRV - most recently visited
Backin up while docked has no effect (except to change LRV
to MRV) Turning around while docked, leaves you in front

of station, facing it

station MRV, front of ship

station LRV, back of ship

station MRV, back of ship

station LRV, front of ship

actions: TurnAround GoForward Backup
observations: 5
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See LRV forward
See MRV forward

0
1

#
#
#

See that we are docked in MRV
See nothing

2

# 3
# 4

See that we are docked in LRV

start:

0.0 0.00.00.00.00.00.01.0

T: TurnAround

0.01.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.0

0.0 0.00.00.00.01.00.00.0

0.0 0.00.00.00.00.01.00.0

0.01.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.0
0.00.00.01.00.00.00.00.0
0.01.00.00.00.00.00.00.0

T: GoForward

0.00.00.00.01.00.00.00.0

0.01.00.00.00.00.00.00.0
0.01.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.0

0.0 0.00.00.00.01.00.00.0

0.0 0.00.00.00.00.01.00.0

0.0 0.00.00.00.00.01.00.0

0.00.00.00.01.00.00.00.0

T: Backup

0.0 0.00.00.00.00.00.01.0

0.00.40.30.00.30.00.00.0

0.00.00.10.80.00.00.10.0

0.7 0.0 0.00.30.00.00.00.0

0.0 0.00.00.00.30.00.00.7
0.00.10.00.00.80.10.00.0
0.00.00.00.30.00.30.40.0

0.0 0.00.00.00.00.00.01.0
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: GoForward : 1 : 1 : * -3

R: GoForward : 7 : 6 : ¥ -3 # What Chrisman specifies
: GoForward : 6 : 6 : * -3  # What I think it should be
: Backup : 3 : 0 : * 10

oo e VRN - e

A.3 Cheese Maze

This problem is shown in Figure 18. There are four actions corresponding to
movement in the four compass directions. Movements that attempt to move
outside the grid are considered to have no effect on the location. It is as if it
merely bumps into the wall and stays put. Movement is deterministic for all
actions and a reward of 1.0 is given in the goal state only (zero reward for
all other states.) The goal state is depicted with the star

There are 11 states, but only 7 observations. The observations correspond
to what would be seen in all four directions immediately adjacent to the
location and are deterministic so that only a single observation is possible
from any particular state. For example, states 5, 6 and 7 all appear identical,
while states 0, 2 and 4 are all unique. The goal is its own unique observation.

# The infamous cheese-maze example (well.. it isn’t
# much of a maze)

discount: 0.95

values: reward

states: 11
actions: NO SO EO WO
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Figure 18: McCallum’s cheese maze problem.

7

observations:

start:

0.100000 0.100000 0.100000 0.100000 0.100000

0.100000 0.100000 0.100000 0.100000 0.100000 0.0

T: NO

1.0 0.0 0.00.00.00.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.0
1.0 0.0 0.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.0

0.00.00.00.00.00.00.01.00.00.00.0

0.100000 0.100000 0.100000 0.100000 0.100000 0.100000

0.100000 0.100000 0.100000 0.100000 0.0

T: S0

0.00.00.00.00.01.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.0

0.0 0.00.00.00.00.01.00.00.00.00.0

0.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.01.00.00.00.0

0.0 0.00.00.00.00.00.00.01.00.00.0
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0.0 0.00.00.00.00.00.00.00.00.01.0

0.0 0.00.00.00.00.00.00.00.01.00.0

0.0 0.00.00.00.00.00.00.01.00.00.0

0.0 0.00.00.00.00.00.00.00.01.00.0

0.100000 0.100000 0.100000 0.100000 0.100000 0.100000

0.100000 0.100000 0.100000 0.100000 0.0

T: EO

0.01.0 0.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.0

0.0 0.00.00.00.00.01.00.00.00.00.0

0.00.00.00.00.00.00.01.00.00.00.0

0.0 0.00.00.00.00.00.00.01.00.00.0

0.0 0.00.00.00.00.00.00.00.01.00.0

0.100000 0.100000 0.100000 0.100000 0.100000 0.100000

0.100000 0.100000 0.100000 0.100000 0.0

T: WO

1.0 0.0 0.00.00.00.00.00.00.00.00.0
1.0 0.0 0.00.00.00.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.0

0.0 0.00.00.00.00.01.00.00.00.00.0

0.00.00.00.00.00.00.01.00.00.00.0

0.0 0.00.00.00.00.00.00.01.00.00.0

0.0 0.00.00.00.00.00.00.00.01.00.0

0.100000 0.100000 0.100000 0.100000 0.100000 0.100000

0.100000 0.100000 0.100000 0.100000 0.0

0: NO

1.0 0.0 0.00.0 0.0 0.00.0
0.01.0 0.0 0.00.00.00.0
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0.00.01.00.00.00.00.0
0.01.0 0.0 0.00.00.00.0
0.00.00.01.00.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.00.01.0

0: SO

1.0 0.0 0.00.0 0.0 0.00.0
0.01.0 0.0 0.00.00.00.0
0.00.01.00.00.00.00.0
0.01.0 0.0 0.00.00.00.0
0.00.00.01.00.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.00.01.0

0: EO

1.0 0.0 0.00.0 0.0 0.00.0
0.01.0 0.0 0.00.00.00.0
0.00.01.00.00.00.00.0
0.01.0 0.0 0.00.00.00.0
0.00.00.01.00.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.00.00.00.01.00.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.01.00.0

0.0 0.00.00.00.00.01.0

0: WO

1.0 0.0 0.00.0 0.0 0.00.0
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A.4 Part Painting

This problem is loosely based upon a problem formulated in [Kushmerick et al., 1993].
There is a part that needs to be painted and shipped if it is not flawed, or

simply rejected if it is flawed. A flawed part starts off blemished, though
painting a part can hide the blemish.

There are three state variables corresponding to whether the part is:
flawed, blemished or painted. The full state space becomes the cross product
of these three variables, for a total of 8 states. However, since we assume
that parts start in one of only two of the states, four of these state are not
needed, since it is impossible for a part to attained that state from the two
possible starting states. The only two possible starting states are either the
part is flawed and blemished or the part is not flawed and not blemished. In
both cases, the part starts off unpainted.

There are four possible actions: inspect, paint, ship or reject the part.
Painting a part that is already painted will leave its state unchanged. Painted
an unblemished and non-flawed part will result in an unflawed, unblemished
and painted part with probability 0.9. Thus, there is a 0.1 probability that
the painting process is not successful. The same goes for painting a flawed
and blemished part, except that if the painting is succesful (probability 0.9)
then the part also become unblemished, with the paint hiding the blemish.

Rejecting or shipping a part will result in either a penalty or reward of
1, and the state being reset to correspond to a new part with one of the two
possible starting states with equal probability.
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Inspecting a part does not change its state, it merely gives informa-
tion about the part (i.e., an observation). There are only two observations:
blemished and unblemished. Only the inspect action will yield any informa-
tion, since all other actions result in a deterministic unblemished observation
(which is the same as seeing nothing in these states.) Inspecting will observe
the whether the part is blemished or unblemished part successtully with prob-
ability 0.75, and with probability 0.25 result in the incorrect observation.

# Problem based on example in some of Hanks and
# Kushmerick’s papers

# BL - blemished, FL - flawed, PA painted

discount: 0.95

values: reward

states: NFL-NBL-NPA NFL-NBL-PA FL-NBL-PA FL-BL-NPA
actions: paint inspect ship reject

observations: NBL BL

start:
0.5 0.0 0.0 0.5

T: paint : NFL-NBL-NPA : NFL-NBL-NPA

0.1

T: paint : NFL-NBL-NPA : NFL-NBL-PA
0.9

T: paint :NFL-NBL-PA : NFL-NBL-PA
1.0

T: paint : FL-NBL-PA : FL-NBL-PA
1.0

T: paint : FL-BL-NPA : FL-NBL-PA

0.9
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T: paint :FL-BL-NPA : FL-BL-NPA
0.1

T: inspect
identity

T: reject : *
0.50.0 0.00.5

T: ship : =*
0.50.0 0.00.5

0: paint : * : NBL

1.0

0: inspect : NFL-NBL-NPA : NBL
0.75

0: inspect : NFL-NBL-NPA : BL
0.25

0: inspect : NFL-NBL-PA : NBL
0.75

0: inspect : NFL-NBL-PA : BL
0.25

0: inspect : FL-NBL-PA : NBL
0.75

0: inspect : FL-NBL-PA : BL
0.25

0: inspect : FL-BL-NPA : NBL
0.25

0: inspect : FL-BL-NPA : BL
0.75
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0: ship : * : NBL
1.0

0: reject : * : NBL
1.0

R: ship : NFL-NBL-PA : * : *
1.0

R: reject : FL-BL-NPA : * : =*
1.0

R: ship : NFL-NBL-NPA : * : =*
-1.0

R: reject : NFL-NBL-NPA : * : *
-1.0

R: reject : NFL-NBL-PA : * : =*
-1.0

R: ship : FL-NBL-PA : * : *
-1.0

R: ship : FL-BL-NPA : * : *
-1.0

A.5 4x4 Grid

This problem consists of a simple 4 by 4 grid of locations. Movement is deter-
ministic in the four compass directions, with no change of location occurring
if it tries to move out of the grid. There is a single goal state in the south-
east corner location where a reward of 1 is gained. All other states give zero
reward. The difficulty in this problem is that all states look exactly the same,
except the goal state. Thus there are two observations: we deterministically
see 'Nothing’ if we are in any state besides the goal and deterministically see
the goal when we are in the goal location.
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discount: 0.95

reward
16

values:

states:

NO SO EO WO

actions:

nothing goal

observations:

start:

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.0

T: NO

1.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0
1.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.01.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.01.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.01.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.01.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.0

T: S0

0.00.00.00.01.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.01.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.01.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.01.00.00.00.00.00.00.00.0
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0.00.00.00.00.00.00.00.00.01.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.01.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.01.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.01.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.01.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.01.0

0.00.00.00.00.00.00.00.00.00.00.00.01.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.01.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.01.00.0

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.0

T: EO

0.01.0 0.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.01.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.01.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.01.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.01.00.00.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.01.00.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.01.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.01.00.00.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.01.00.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.01.00.0

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.01.0

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.0

T: WO

1.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
1.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.01.0 0.00.00.00.00.00.00.00.00.00.00.00.00.00.0
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0.00.01.00.00.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.01.00.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.01.00.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.01.00.00.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.01.00.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.01.00.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.00.01.00.00.00.00.00.0
0.00.00.00.00.00.00.00.00.00.00.00.01.00.00.00.0
0.00.00.00.00.00.00.00.00.00.00.00.01.00.00.00.0
0.00.00.00.00.00.00.00.00.00.00.00.00.01.00.00.0
0.066667 0.066667 0.066667 0.066667 0.066667 0.066667 0.066667

0.066667 0.066667 0.066667 0.066667 0.066667 0.066667
0.066667 0.066667 0.0

0: * : * : nothing 1.0
15 : nothing 0.0
0: * : 15 : goal 1.0

o

A.6 Tiger

This is a simple 2 state and two observation process. The state of the world
can be either that there is a tiger behind the left door or there is a tiger
behind the right door. We have three possible actions: listen, open the left
door or open the right door. If we open the door with the tiger behind it we
get a reward of —100 (i.e., a penalty). Opening the door without the tiger
gives a reward of +10. Listening always costs, and the reward is —1 (i.e., a
cost). However, listening gives us some information about where the tiger
is. In particular, listening will tell us where the tiger is correctly 85% of the
time and incorrectly 15% of the time.

# This is the tiger problem of AAAI paper fame.

discount: 0.95
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values: reward

states: tiger-left tiger-right
actions: listen open-left open-right
observations: tiger-left tiger-right

start:
0.5 0.5

T:listen
identity

T:open-left
uniform

T:open-right
uniform

O:1listen
0.85 0.15
0.15 0.85

O:open-left
uniform

O:open-right
uniform

R:listen : * : * : *x -1

R:open-left : tiger-left : * : * -100
R:open-left : tiger-right : * : * 10
R:open-right : tiger-left : * : * 10

R:open-right : tiger-right : * : * -100
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+1

Figure 19: Russell’s 4x3 maze problem.

A.7 4x3 Grid

This problem is nearly identical to that used in [Parr and Russell, 1995] and
1s shown in Figure 19. The only change was to remove the zero cost absorbing
state and replace the transitions to it with equally likely transitions to all
non-reward and non-penalty states. This has the effect of creating a reset
after getting a reward or penalty.

There are 11 states in this problem as shown in Figure 19. Two of states
are special states where a reward or penalty is received (41 or —1) and
the agent being reset afterwards. For all other states, a reward of —0.04 is
incurred (i.e., a cost).

There are four actions corresponding to movements in the four major
compass directions. These movements succeed with probability 0.8, and
with 0.1 probability of moving perpendicular to the intended direction. Any
movement that would take the agent outside the grid, results in the agent
staying in the start location. For example, an attempt to move north from
the extreme north-west location will result in a 0.9 probability that the agent
stays in that location. This occurs because the north movement, probability
0.8, and the west movement, probability 0.1 are not possible. There is still
a 0.1 probabilty that the agent will move east.

There are six observations: four that correspond to whether or not there
is a wall directly to the east and west of the location and one each for the
positive reward, +1, state and the negative reward, —1 state. All of these
observations are deterministic.

# Russell and Norvig’s 4x3 maze
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Rewards and penalties are associated with states, not actions.

The default reward/penalty is -0.04.

There is no discounting, but a there is an absorbing state that

+ and - transition to automatically. The absorbing state cannot be exited.

States are numbered from left to right:

3
6

S
o 0N

10
I removed the absorbing state

The actions, NSEW, have the expected result 80% of the time, and
transition in a direction perpendicular to the intended on with a 10%
probability for each direction. Movement into a wall returns the agent
to its original state.

Observation is limited to two wall detectors that can detect when a
a wall is to the left or right. This gives the following possible

observations:

left, right, neither, both, good, bad, and absorb

H H H H H H H R H TR R R R R R R

good = +1 reward, bad = -1 penalty,

discount: 0.95

values: reward

states: 11

actions: n s e w

observations: left right neither both good bad

start:
0.111111 0.111111 0.111111 0.0 0.111111 0.111111 0.0
0.111112 0.111111 0.111111 0.111111

T: n
0.90.10.00.00.00.00.00.00.00.00.0
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0.10.80.10.00.00.00 .0 0.0
0.00.10.80.10.00.00 .0 0.0
0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111

0.80.00.00.00.20.00.00.00.00.0
0.00.00.80.00.00.10.10.00.00.0

.00.00
.00.00

0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111
0.0 0.00.00.00.80.00.00.10.10.0
0.00.00.00.00.00.00.00.10.80.1
0.0 0.00.00.00.00.80.00.00.10.0
0.00.00.00.00.00.00.80.00.00.1
T: s
0.10.10.00.00.80.00.00.00.00.0
0.10.80.10.00.00.00.00.00.00.0
0.00.10.00.10.00.80.00.00.00.0
0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111
0.0 0.00.00.00.20.00.00.80.00.0
0.0 0.00.00.00.00.10.10.00.00.8
0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111
0.0 0.00.00.00.00.00.00.90.10.0
0.00.00.00.00.00.00.00.10.80.1
0.0 0.00.00.00.00.00.00.00.10.8
0.00.00.00.00.00.00.00.00.00.1
T: e
0.10.80.00.00.10.00.00.00.00.0
0.00.20.80.00.00.00.00.00.00.0
0.00.00.10.80.00.10.00.00.00.0
0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111

0.10.00.00.00.80.00.00.10.00.0
0.00.00.10.00.00.00.80.00.00.1
0.111111 0.111111 0.111111 0.0 0.111111
0.111112 0.111111 0.111111 0.111111

o1

.0
.0
.111111 0.0

.0

0.0
0.111111 0.0

O O O O

(@]

O O O O
= = O O

.0
.0
.0
.111111 0.0

.0

0.0
0.111111 0.0

O O O O

o O

O O O O
©O© = O O

.0
.0
.0
.111111 0.0

.0
.0
.111111 0.0
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0.00.00.00.00.10.00.00.10.80.00.0
0.00.00.00.00.00.00.00.00.20.8090.0

0.00.00.00.00.00.10.00.00.10.00.8

0.0 0.00.00.00.00.00.10.00.00.00.9

T: w

0.90.00.00.00.10.00.00.00.00.00.0
0.80.20.00.00.00.00.00.00.00.00.0

0.00.80.10.00.00.10.00.00.00.00.0

0.111111 0.111111 0.111111 0.0 0.111111 0.111111 0.0

0.111112 0.111111 0.111111 0.111111

0.10.00.00.00.80.00.00.10.00.00.0

0.00.00.10.00.00.80.00.00.00.10.0

0.111111 0.111111 0.111111 0.0 0.111111 0.111111 0.0

0.111112 0.111111 0.111111 0.111111

0.00.00.00.00.10.00.00.90.00.00.0
0.00.00.00.00.00.00.00.80.20.00.0

0.00.00.00.00.00.10.00.00.80.10.0

0.00.00.00.00.00.00.10.00.00.80.1

*

0:

1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.01.00.00.00.0
0.0 0.01.00.00.00.0

0.0 0.00.00.01.00.0

0.0 0.00.01.00.00.0

1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.00.00.01.0

1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.01.00.00.00.0
0.0 0.01.00.00.00.0
0.0 1.0 0.0 0.0 0.0 0.0

: * -0.04
: * -0.04
: * -0.04

v ok

v ok

v ok

1
: x* -0.04

*
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R: x ; 5 : % * -0.04
R: x : 6 : * * -1.0

R: x : 7 : % * -0.04
R: x ; 8 : % * -0.04
R: x : 9 : % : % -0.04
R: x : 10 : x : *x -0.04

A.8 Larger Problems

The three larger problems (57, 89 and 33 states) are all based upon the
same framework and so we will describe this first. We will then discuss any
deviations from this basic scheme in the individual sections for each of those
problems.

The basic idea behind these problems, is that there is an agent wander-
ing around some office building. We assume that the locations have been
discretized so that there are a finite number of locations where the agent
could be. The agent has a small finite set of actions it can take, but these
only succeed with some probability. Additionally, the agent is equipped with
very short range sensors to provide it only with information about whether
it is adjacent to a wall. These sensors also have the property that they are
somewhat unreliable and will sometime miss walls or see walls when there
are none. It can “see” in four directions: forward, backward, left and right.
It is important to note that these observations are relative to the current
orientation of the agent. Unlike most of the previous problems where the lo-
cations corresponded to states, in these problems the location and the agent’s
current orientation comprise the states.

There is a single goal location, which is the objective to be achieved by the
agent. Since achieving the goal is the main concern, the goal location actually
requires only a single state, since we are not interested in the orientation when
it achieves the goal. Upon reaching the goal, the agent is reset randomly
among the non-goal states.

The location layouts are show in Figures 2, 3 and 4, but the actual states
consist of 4 for each location, since this is the number of possible orientations
we allow the agent to have.

The actions that can be chosen consists of the movements: forward, turn-
left, turn-right, turn-around and no-op (stay-in-place). These action are

33
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@ @ 005
Initial Orientation

0.025

0.05

0.025
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Figure 20: Transition probabilities for the forward movement in larger prob-
lems.

0.70 0.10

P &

0.10 0.10

n |90

Initial Orientation

Figure 21: Transition probabilities for the turn-left movement in larger prob-
lems.

relative to the current orientation of the agent. As mentioned, each of the
actions is probabilistic and are shown in Figures 20 through 23. The no-op
action always succeeds in leaving the state unchanged.

There are many states, where moving forward could be impossible, given
the layout of the locations. In these cases, the probability mass for the
impossible next state, is collapsed into the probability of not changing state.
The same goes for all other possible movement directions. For example,
consider the situation where the agent has a wall to the front and the left
of it. Moving forward will result in no change of state with probability 0.9.
This results because the successful forward movement, probability 0.8, is
impossible as is the erroneous left movement, which has probability 0.05.
Thus these two probabilities are added to the predefined probability, 0.05,
of having no state change. There will still be a 0.05 probability of sliding
erroneously to the right and 0.25 probability for the two accidental backward
movements.
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@ 0.10 0.10

Initial Orientation

0.10 0.70

Figure 22: Transition probabilities for the turn-right movement in larger
problems.

© O
Cb 0.15 0.10

Initial Orientation

0.60 0.15

Figure 23: Transition probabilities for the turn-around movement in larger
problems.
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The observations are comprised of four independent sensors which are
able to detect walls immediately (i.e., the adjacent locations only) in four
directions. Each is not completely reliable, so that if there is a wall, it will
detect it with probability 0.9. If there is no wall, then it will mistakenly sense
a wall with probability 0.05. Thus, from a given state, there are 16 possi-
ble observations: 2 possible values, wall or no-wall, for 4 separate sensors.
These sensors operate independently, so the probability for an observation is
computed by multiplying the four individual probabilities.

The goal state gives a reward of +1 and all other states give zero reward.
In addition, there is an extra observation, that corresponds to observing
the goal. This observation is only possible in the goal state and occurs
deterministically.

A.8.1 57 States

To the basic structure, this problem adds three more observations. These ob-
servations correspond to three distinct landmarks in the environment. There
are three states where the agent will deterministically see one of these land-
marks, which will fully disambiguate its location. The locations are indicated
in Figure 2 and the landmark observations are made only when the agent
is facing south in those locations. These landmarks are a remaining artifact
from exploration of some other ideas.

A.8.2 89 States
This problem conforms exactly to the description layed out previously, no
variation on rewards or observations has been made.

A.8.3 33 States

This problem deviates from the initial set-up it two ways. First, the starting
belief state and the belief state it resets to is not uniform over all non-
goal states. Instead it is uniform over two particular state as depicted in
Figure 4. The other change is in the addition of penalties. —1.0, for the two
upper corner states. These modification where made to bring out a certain
characteristic of the problem.
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